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Abstract

This research note provides initial results on the relationship between argumentation and

Paul Thagard’s coherence theory. We study the relationship, via appropriate transfor-

mations, between different types of coherent graphs (according to the values in the arcs)

and different argumentation frameworks like Dung’s abstract argumentation framework,

weighted argument systems or preference-based argumentation. The practical interest of

our study is to show that coherence theory and argumentation can be mutually useful.

Keywords: Argumentation, Coherence Theory

1. Introduction

This paper studies and provides initial results on the relationship between several

models of argumentation and coherence theory.

Coherence theory as proposed by Paul Thagard [1] assumes that knowledge can be

represented as a network where nodes represent claims and where valued edges linking

nodes may be labelled with positive or negative values representing respectively the

degree of coherence or incoherence between nodes. Every coherence graph is associated

with a number called the coherence of the graph. Based on Thagard formalism, this can

be calculated by partitioning the set of nodes N of the graph in two sets, A and N \A,

where A contains the accepted elements of N , and N \ A contains the rejected ones.

The aim is to partition N such that a maximum number of nodes linked by edges with
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positive values (weights) are in the same set (i.e. A or N \A) while a maximum number

of nodes linked by edges with negative values are in complementary sets (i.e. A, and

N \A). The values of edges belong to [−1, 1] \ {0}.

There have been different proposals to represent arguments and their relationships.

An Abstract Argumentation Framework (AF) [2] can be considered as a pair of a set

arguments and a binary attack relation defined on the set of arguments. Such a theory

can be represented as an oriented graph where nodes represent the arguments and edges

the attacks between them. In Weighted Argument Systems (WAS) [3] attacks are asso-

ciated with a weight, indicating the relative strength of the attack. A key concept in this

framework is the notion of an inconsistency budget, which characterises how much incon-

sistency we can tolerate when selecting the sets of preferred arguments (extensions). It

means that given an inconsistency budget β, we are prepared to disregard attacks among

the arguments up to a total weight of β. In Preference based Argumentation (PAF) a

preference relationship is explicitly established between arguments that helps to rank

sets of arguments.

Although argumentation and coherence theory try to understand similar phenomena,

their relationship has not attracted much work in the past. In [4] coherence theory is used

to understand the notion of norm adoption and a discussion on the relationship with AF

is given although no formal account of this relationship is established. Here we contribute

by giving some preliminary results on the relationship between optimal partitions and

stable extensions in AF. In [5] argumentation dialogues are used to regain coherence when

conflicts arise between agents. Argumentation is considered as a mechanism that permits

the interaction between agents endowed with coherence theories. Here, differently from

this work, we study the relationships between both approaches as alternative means of

representing conflicting views.

In this paper we contribute to the study of the relationships between coherence theory

and different argumentation formalisms. In particular we provide three results.

First, we transform classical argumentation theories into particular coherence graphs

and show that the optimal partitions of these graphs correspond to stable extensions of

the argumentation theory.

Second, we show that some coherent graphs can be understood as a WAS. More
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precisely, we consider a particular type of coherence graphs, those whose nodes represent

atomic arguments, and that contain only maximally negative edges (i.e. −1). We prove

that any subset A of arguments of such a coherence graph is an admissible extension

with respect to the inconsistency budget β of a particular type of WAS.

Third, we show that the maximal partitions of coherence graphs that contain edges

labelled with {−1, 1} can have an interpretation as extensions of PAF systems.

Moreover, we also show how coherence theory can be embedded into argumentation

systems in order to provide alternative means to rank stable extensions. This is partic-

ularly useful when preference or value information are difficult to obtain.

The paper is structured as follows. First, we provide some background knowledge

on coherence and argumentation. Then, we study in order the relationship between

coherence theory and Dung, WAS, and PAF systems. We then discuss the integration

between coherence theory and argumentation systems. We conclude with a summary of

the results and with the open lines for future work.

2. Background

2.1. Coherence Theory

The theory of coherence is a psychological motivational theory which understands

coherence as an intrinsic domain independent motivation to agents. As any other moti-

vational theory it aims at explaining the behaviour of agents at a high-level. We refer

to Thagard’s interpretation of the theory as he proposed a computational model for an

otherwise long disputed concept.

Thagard presents the theory of coherence as a cognitive theory with roots in philoso-

phy that interpret problem solving as the satisfaction of constraints over interconnected

entities [1, 6]. The theory of coherence is then the study of associations among different

pieces of information and the computation of how do they ‘fit’ together. Each piece

of information puts constraints on other pieces of information; these constraints can be

positive or negative. Positive constraints strengthen the connected pieces of information

when considered together while negative constraints weaken them. In this theory, the

cognitive process to be undertaken by an agent is to put together as many information

LIPADE-TR-1 3



pieces that have positive constraints while separating from these those that have negative

constraints. In other words, coherent-based agents face an optimisation problem.

Several psychological processes can be understood in terms of coherence and con-

straint optimisation. These processes include stereoscopic vision, word perception, dis-

course comprehension, analogical mapping, and cognitive dissonance; see [7] for details.

Next we recall the basic definitions of coherence graph, constraint satisfaction and

strength.

Definition 1 ([8]). A coherence graph is an edge-weighted undirected graph g = 〈N,E,ψ〉,

where

• N is a finite set of nodes representing pieces of information

• E = {{v, w}|v, w ∈ N} is a finite set of edges representing the coherence or inco-

herence between pieces of information and that we shall call constraints

• ψ : E → [−1, 1] \ {0} is an edge-weighted function that assigns a negative or

positive value to the coherence between pieces of information, and which we shall

call coherence function

The nodes of coherence graphs can be understood, from a knowledge representation

perspective, as representing beliefs, desires, intentions, norms, or other cognitions an

agent may have [8, 5]. How the coherence values are computed depends on what sort of

coherence we want to model. Thagard distinguishes among several types of coherence:

deductive, explanatory, . . . , and suggests different methods of computing these degrees.

A coherence-based agent aims at determining which subset of the overall set of informa-

tion pieces is to be accepted and which is to be rejected, that is how to partition N into

two sets containing accepted and rejected claims.

Definition 2 ([8]). Given a coherence graph g = 〈N,E,ψ〉 and a partition of N into

(A,R) the set of satisfied constraints CA ⊆ E is given by:

CA = {{v, w} ∈ E|v ∈ A iff w ∈ A when ψ({v, w}) > 0,

v ∈ A iff w ∈ R when ψ({v, w}) < 0}

LIPADE-TR-1 4



According to Thagard, Coherence-based agents perform a search process to find the

best partition which is the one that maximises the strength as defined next.

Definition 3 ([8]). Given a coherence graph g = 〈N,E,ψ〉 the strength of a partition

(A,R) is given by:

Str(g,A) =

∑
{v,w}∈CA

|ψ({v, w})|
|E|

The computation of the best partition does not tell us which one of the two sets is the

one to accept, as the computation is symmetric, i.e. Str(g,A) = Str(g,R). To determine

which partition to accept an agent should use some ad-hoc criteria (e.g. greater number

of nodes, greater average degree, etc.).

Thagard experimented with different computational implementations of coherence.

Among them, ECHO [1] uses a neural network approach that although does not guarantee

convergence has a good behaviour on small networks. For very small networks like those

in this research note a straightforward algorithm that enumerates all possible partitions

is enough and is the algorithm we used.

A major question, left open by Thagard, is how to compute the degrees and links

between pieces of information. Some works fill this gap proposing specific domain depen-

dent functions, e.g. deductive relationships in [4]. We are assuming in this paper that

these relationships are established and determined before our study can begin.

2.2. Some specific types of coherence graphs

From now onwards when we refer to the partition of a coherence graph we mean the

best partition. We finally define the coherence of a graph as its strength assuming we

would accept all its elements.

Definition 4. Given a coherence graph g = 〈N,E,ψ〉, we define the coherence of graph

g, noted Coh(g), as the strength of the partition (N, ∅), that is the partition with all nodes

in N accepted, Coh(g) = Str(g,N).

Next definition is useful in some of the proofs later on.

Definition 5. [Subgraph] Given two coherence graphs g = 〈N,E,ψ〉 and g′ = 〈N ′, E′, ψ′〉

we say that g′ is a subgraph of g, noted g′ v g iff N ′ ⊆ N , E′ ⊆ E, and ψ′ = ψ|N ′ .

LIPADE-TR-1 5



In this paper we will use two particular types of coherence graphs. First, those where

the links between nodes are all labeled with −1. This value expresses the fact that the two

nodes are maximally incoherent. We call such graphs negative unipolar (or neg-unipolar).

More formally:

Definition 6. [Negative Unipolar Coherence Graphs] We say that a coherence graph g =

〈N,E,ψ〉 is negative unipolar (or neg-unipolar) if and only if for all e ∈ E, ψ(e) = −1.

Second, those where the links between nodes are all labeled with −1 or 1. We call

such graphs Bipolar. More formally:

Definition 7. [Bipolar Coherence Graphs] Given a coherence graph g = 〈N,E,ψ〉, we

say it is a Bipolar Coherence Graph iff (1) it is connected and (2) ψ(e) ∈ {1,−1} for all

e ∈ E.

2.3. Argumentation Systems

An argumentation system, as introduced by Dung in [2], is a pair 〈A,R〉, where A is

a set of arguments, and R ⊆ A×A is an attack relation. The relation a attacks b, or b

is attacked by a, is denoted by a R b or (a, b) ∈ R.

In [2], different acceptability semantics were introduced. They are based on two basic

concepts: defence and conflict-freeness, defined as follows:

Definition 8 (Defence/Conflict-freeness). Let T = 〈A,R〉 be an argumentation sys-

tem. Let A′ ⊆ A.

• A′ is conflict free iff @ a, b ∈ A′ s.t (a, b) ∈ R.

• A′ defends a ∈ A iff ∀b ∈ A, if (b, a) ∈ R, then ∃c ∈ A′ s.t (c, b) ∈ R.

The basic idea behind these semantics is the following: for a rational agent, an

argument a is acceptable if he can defend a against all attacks. All the arguments

acceptable for a rational agent will be gathered in a so-called extension. An extension

must satisfy a consistency requirement and must defend all its elements.

Definition 9 (Acceptability Semantics). Let T = 〈A,R〉 be an argumentation sys-

tem and A′ a conflict free set of arguments.
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• A′ is an admissible extension iff A′ defends any element in A′.

• A′ is a preferred extension iff A′ is a maximal (w.r.t set ⊆) admissible set.

• A′ is a stable extension iff it is a preferred extension that attacks any argument in

A \ A′.

In [3] the authors have proposed an extension of classical Dung’s argument systems

in which attacks are associated with a weight which indicates the relative strength of

each attack. A key idea in weighted argument systems is that of an inconsistency budget,

characterizing how much inconsistency we are prepared to tolerate. More formally:

Definition 10. [Weighted Argument Systems (WAS) [3]] A weighed argument system

is a triple W = 〈A,R, w〉 where 〈A,R〉 is a Dung-style abstract system and w : R → <>
is a function assigning real valued weights to attacks.

An inconsistency budget β characterizes how much inconsistency we are prepared

to tolerate. Thus, accepting an inconsistency budget β means that we are prepared

to disregard attacks up to a total weight of β. Dung systems implicitly assume an

inconsistency budget of β = 0. An increasing number of extensions can be found for

increasing values of β. We note a WAS system with budget β as W β = (〈A,R, w〉, β).

Definition 11. [[3]] Let W = 〈A,R, w〉 be a weighted argument system. Given R ⊆ R,

we define the budget of R as:

wt(R,w) =
∑

(a1,a2)∈R

w(a1, a2)

And the sets of links under budget β as:

sub(R, w, β) = {R : R ⊆ R and wt(R,w) ≤ β}

3. Coherence Theory and Classic Argumentation (AF)

In this section we establish results on the relation of Dung classic argumentation [2]

and coherence theory. Given a symmetric Dung system, i.e. T = 〈A,R〉, such that
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(a, b) ∈ R iff (b, a) ∈ R, we define its associated coherence graph as gT = 〈A,R, ψ〉,

where ψ(e) = −1 for all e ∈ R. Obviously, gT is neg-unipolar.

In the particular case we are considering in this work, namely arguments correspond

to the nodes of a coherence graph and attacks to its arcs, it is reasonable to consider that

the non oriented negative arcs in a neg-unipolar graph correspond to symmetric attacks

in the associated argumentation system.

The coherence graph gT associated to a symmetric argumentation theory T is a classic

undirected graph. A bipartite graph is a graph whose nodes can be divided into two

disjoint sets A and B such that every edge connects a node in A to one in B. Clearly, if a

coherence graph g is bipartite it admits an optimal partition (A,B) with Str(g,A) = 1.

On the other hand, it is well known that a graph is bipartite iff it contains no odd cycles.

The above leads to the following observation: A neg-unipolar graph g has a partition

(A,R) with Str(g,A) = 1 iff it contains no odd cycles.

Clearly, the coherence graph gT of a symmetric Dung argumentation theory T con-

tains an odd cycle iff T contains an odd cycle. The next proposition states that an

optimal partition of the coherence graph associated to a symmetric Dung theory without

odd cycles induces two stable extensions for the theory.

Proposition 1. Let T = (A,R) be a symmetric Dung theory, (A,R) an optimal parti-

tion of its corresponding neg-unipolar graph gT , and i(A) the set of nodes with degree 0.

Then A∪ i(A) and R∪ i(A) are stable extensions of T iff T does not contain odd cycles.

Proof. If T does not contain odd cycles, then gT is a bipartite graph, i.e. there is an

optimal partition (A,R) with Str(g,A) = 1. It suffices to show that A∪ i(A) is a stable

extension. First, A ∪ i(A) is conflict-free because otherwise Str(g,A) 6= 1. Now assume

that A is not a stable extension because there is b ∈ R such that there is no a ∈ A with

{a, b} ∈ R. Clearly, b cannot have degree 0 because then b ∈ i(A). Therefore, there

must be b′ ∈ R such that {b′, b} ∈ R, which means that Str(g,A) 6= 1, and thus we

get a contradiction. On the other hand, if T contains an odd cycle, gT is not bipartite,

and therefore the arguments of T cannot be partitioned in two sets that are conflict-free.

Similar arguments hold for R.
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We now study a relation between non-symmetric Dung frameworks and coherence

theories based on a different coherence theory construction that is described in the next

definition and used in the rest of this section.

Definition 12. Given an argumentation framework T = (A,R), we define its corre-

sponding coherence theory gT = 〈N,E,ψ〉 as follows

• N = A ∪ {xij |(ai, aj) ∈ R}

• E = {{ai, xij}, {xij , aj}|(ai, aj) ∈ R}

• ψ({ai, xij}) = 1, ψ({xij , aj}) = −1, ∀(ai, aj) ∈ R

We say that a Dung argumentation theory T = (A,R) is connected if there is a

directed path from any node in A to any other node in A.

Proposition 2. Let T be a connected Dung argumentation theory, and gT its corre-

sponding coherence theory. Any partition (A,R) on gT such that Str(gT , A) = 1 induces

two stable extensions on T .

Proof. Let T = (A,R) and let (A,R) be a partition of gT with Str(gT , A) = 1. We

consider A, as similar arguments hold for R. Clearly, A contains a set of nodes S ⊆ A

that correspond to arguments of A. We show that this set S = A∩A is a stable extension

of T .

First observe that for each node ai ∈ S all nodes xij for arguments aj s.t. (ai, aj) ∈ R

must also belong to S, since ψ({ai, xij}) = 1 and Str(gT , A) = 1. The same holds for

the nodes of R ∩ A. We first show that S is conflict-free. By way of contradiction,

suppose that ai, aj ∈ S and (ai, aj) ∈ R. Then, A must contain the nodes ai, aj , xij with

ψ({xij , aj}) = −1, therefore Str(gT , A) 6= 1, contradiction.

We now prove that for all aj ∈ R ∩A there is a node ai ∈ A ∩A s.t. (ai, aj) ∈ R. Since

T is connected, there must be an argument ak ∈ A s.t. (ak, aj) ∈ R. If ak ∈ A, the

result holds. Assume that ak ∈ R. Then there is a node xkj ∈ R s.t. ψ({xkj , aj}) = −1

therefore Str(gT , A) 6= 1, contradiction.

The above property leads to the following correspondence between the optimal par-

titions of the coherence graph of a Dung theory without odd cycles and its stable exten-

sions.
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Proposition 3. Let T be a connected argumentation theory without odd cycles, and

gT its corresponding coherence theory. An optimal partition of gT induces two stable

extensions of T .

Proof. Given gT we construct an undirected graph g′ as follows. For node ai and all

nodes xij connected to ai with a positive link, we introduce a node a′i in g′. A node a′i is

connected to node a′j in g′ if there is a node xij in gT such that {ai, xij}, {xij , aj} ∈ E

for the nodes ai, aj that correspond to a′i, a
′
j . Clearly, g′ is isomorphic to (the graph

that corresponds to) T , therefore does not contain odd cycles. Moreover, a bipartition of

g′ induces an optimal partition (A,R) of gT with Str(gT , A) = 1. Then the claim follows

by proposition 2.

4. Coherence Theory and Weighted Argument Systems (WAS)

In this section we study a possible relationship between coherence theory and weighted

argument systems (WAS). We consider the particular case of neg-unipolar graphs. We

consider that negative arcs linking nodes in a neg-unipolar graph represent symmetric

weighted attacks of equal value (e.g. w = 1) between arguments in an associated weighted

argument system. More formally:

Definition 13. Given a neg-unipolar graph g = 〈N,E,ψ〉 we define the weighted ar-

gument system associated to g with inconsistency budget β as W β(g) = (〈N,E,w〉, β)

where w(a, b) = w(b, a) = 1 for all (a, b) ∈ E.

When β = 0 the weighted argument system associated to a neg-unipolar graph cor-

responds to a symmetric Dung abstract argumentation system.

Based on the above we can define formally a WAS (g) as follows:

Definition 14. Given a neg-unipolar graph g = (N,E,ψ) we define the weighted argu-

ment system of g as WAS (g) = W 2∗|Σψ(e)|(g).

We need now to define a notion of internal inconsistency of a coherence graph which

is simply the addition of its negative links. More formally:
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Definition 15. [Internal Inconsistency (INC)] Given a graph g = 〈N,E,ψ〉 the internal

inconsistency of graph g is defined as INC(g) = |Σψ(e)<0ψ(e)|

Based on the above notions we can now formulate a relation between coherence and

weighted argument systems.

Proposition 4. Let (A,R) be a partition of a neg-unipolar graph g = 〈N,E,ψ〉. Then

A is an admissible extension of W k(g), where k = 2 ∗ INC(〈A,E|A, ψ〉).

Proof. Clearly, A, as any subset of N , is an admissible extension. On the other hand the

budget of A is the number of negative edges that link its nodes, i.e. INC(〈A,E|A, ψ〉),

multiplied by 2, since every undirected edge of g corresponds to a pair of directed edges

in W k(g). 2

It is then obvious that all admissible extensions of WAS (g) will appear as parts of

the possible bipartitions of the associated neg-unipolar coherence graph g.

We will now see that the strength of coherence graphs induces a ranking on the

bipartitions of the nodes of neg-unipolar graphs that has an interesting meaning from an

argumentation perspective. The following result shows that the order of the bipartitions

induced by Str(·) of a neg-unipolar graph induces a ranking over Dung’s stable extensions

(i.e. for inconsistency budget β = 0 of the associated WAS.)

Theorem 1 (Ranking of stable extensions). Given a neg-unipolar graph g = 〈N,E,ψ〉,

let P = 〈P1, .., Pn〉 be the partially ordered set (or poset), according to Str(·), of all possi-

ble partitions of g where Pi = (Ai, Ri). Then, for any pair Ei and Ej of stable extensions

of W 0(g), INC (〈N \Ei, E|N\Ei , ψ〉) < INC (〈N \Ej , E|N\Ej , ψ〉) if there are k, l such that

Pk = (Ei, N \ Ei) and Pl = (Ej , N \ Ej) and k < l.

Proof. : Let P = 〈P1, .., Pn〉 be the partially ordered set, according to Str(·), of all

possible partitions of the neg-unipolar graph g = 〈N,E,ψ〉. Let’s consider two partitions

Pi = (Ei, N \ Ei) and Pj = (Ej , N \ Ej) s.t. Ei, Ej are stable extensions of W 0(g).

Following definition 4 the strength of the partition Pi is Str(g, Ei)=Str(g,N \Ei) and the

strength of Pj is Str(g, Ej)=Str(g,N \Ej). We must prove that INC (〈N \Ei, E|N\Ei , ψ〉)

< INC (〈N \ Ej , E|N\Ej , ψ〉) if Str(g,N \ Ei) > Str(g,N \ Ej) (i.e i < j). Following

definitions 2 and 4 the strength of a partition P depends on the number of satisfied
LIPADE-TR-1 11



constraints namely a) how many negative arcs are cut, splitting the linked arguments in

the two subparts of a partition and b) how many positive arcs are protected i.e keeping

the linked arguments in the same subpart of the partition. In our case the graph g is

a neg-unipolar graph and therefore only negative arcs (i.e. for all e ∈ E, ψ(e) = −1)

exist between the arguments. That means that the number of not satisfied constraints

only relies to the number of negative arcs that link arguments in any subpart of the

partition. As Ei, Ej are stable extensions we know that INC (Ei)=INC (Ej)=0. Thus

there is no violated constraints (i.e. arguments linked by negative arcs). So the value

of the strength of Pi (resp. Pj) depends exclusively on the number of not satisfied

constraints (i.e. number of negative arcs) in N \Ei (resp. N \Ej). As the total number of

negative arcs is |E|, the lower the number of negative arcs appearing in e.g. N \ Ei, the

greater the number of satisfied constraints (i.e. negative arcs cut) and thus, according to

definition 4, the higher the value of Str(g,N \Ei). Thus if Str(g,N \Ei) > Str(g,N \Ej)

that means that INC (〈N \ Ei, E|N\Ei , ψ〉) < INC (〈N \ Ej , E|N\Ej , ψ〉). 2

The above result implies an ranking on Dung’s extensions according to the internal

inconsistency of the arguments that are left out of the extensions. The following example

illustrates this ranking.

Example 1. Consider the neg-unipolar graph g of Figure 1 and its associated weighted

argument system W 18(g) (i.e. 18 = 2 ∗ INC (g) with INC (g) = 9) in Table 1. On the

left hand column of the table we see the partitions of the graph ranked according to their

strength and on the right hand column the Dung’s stable extensions (i.e. β = 0) of the

associated weighted argument system W 18(g).

The set of Dung stable extensions of W 18(g) is SE = {{2, 4}, {{3, 6}{3, 5}}, {{1, 6}{1, 5}, {1, 2}}}.

These extensions are ranked wrt the internal inconsistency of their complementary parts.

So we can observe that (by abusing a little bit the notation) for {2, 4} we have INC[1, 3, 5, 6] =

2∗2 = 4, for {3, 6} we have INC[1, 3, 4, 5] = 2∗3 = 6, for {3, 5} we have INC[1, 2, 4, 6] =

2∗3 = 6, for {1, 6} we have INC[2, 3, 4, 5] = 2∗4 = 8, for {1, 5} we have INC[2, 3, 4, 6] =

2 ∗ 4 = 8 and finally for {1, 2} we have INC[3, 4, 5, 6] = 2 ∗ 4 = 8.
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Partitions Strength Ranking

[3, 5, 6], [1, 2, 4] 0.77

[1, 3, 5, 6], [2, 4] 0.77 rank 1 for [2, 4]

[1, 2, 6], [3, 4, 5] 0.66

[3, 6], [1, 2, 4, 5] 0.66 rank 2 for [3, 6]

[1, 3, 6], [2, 4, 5] 0.66

[2, 4, 6], [1, 3, 5] 0.66

[1, 2, 4, 6], [3, 5] 0.66 rank 2 for [3, 5]

[3, 4, 6], [1, 2, 5] 0.66

[1, 5, 6], [2, 3, 4] 0.66

[1, 6], [2, 3, 4, 5] 0.55 rank 3 for [1, 6]

[2, 3, 6], [1, 4, 5] 0.55

[1, 2, 3, 6], [4, 5] 0.55

[4, 6], [1, 2, 3, 5] 0.55

[1, 4, 6], [2, 3, 5] 0.55

[2, 3, 4, 6], [1, 5] 0.55 rank 3 for [1, 5]

[1, 2, 5, 6], [3, 4] 0.55

[3, 4, 5, 6], [1, 2] 0.55 rank 3 for [1,2]

[2, 6], [1, 3, 4, 5] 0.44

[1, 3, 4, 6], [2, 5] 0.44

[5, 6], [1, 2, 3, 4] 0.44

[2, 3, 5, 6], [1, 4] 0.44

[1, 2, 3, 5, 6], [4] 0.44

[4, 5, 6], [1, 2, 3] 0.44

[1, 4, 5, 6], [2, 3] 0.44

[6], [1, 2, 3, 4, 5] 0.33

[1, 2, 3, 4, 6], [5] 0.33

[2, 5, 6], [1, 3, 4] 0.33

[2, 4, 5, 6], [1, 3] 0.33

[1, 2, 4, 5, 6], [3] 0.33

[1, 3, 4, 5, 6], [2] 0.33

[2, 3, 4, 5, 6], [1] 0.22

[1, 2, 3, 4, 5, 6] 0

Table 1: Partitions of graph in Figure 1
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Figure 1: A neg-unipolar graph.

5. Coherence Theory and Preference based Argumentation (PAF)

In this section we present a relationship between coherence theory and preference-

based argumentation (PAF) (see e.g. [9],[10]). We first recall the definition of a PAF.

Definition 16. [PAF] A preference-based argumentation framework is a tuple PAF =

〈A, Att,�,�〉 where A is a set of arguments, Att ⊆ A×A is an irreflexive and symmetric

attack (or conflict) relation, �⊆ A×A is a preference relation on the set of arguments

A and � is a defeat relation composed by Att and �. Here we define a defeat relation

� s.t.∀a, b ∈ A, a � b iff (a, b) ∈ Att and a � b where a � b iff a � b and b 6� a and

expresses a strict preference of a over b.

It follows directly from the definition that if (a, b) ∈ Att and a ∼ b then (a, b) 6∈ �

where a ∼ b iff a � b and b � a and expresses the indifference between a and b.

Based on the definition above we can establish a relationship between a coherence graph

g and a particular PAF (g) theory associated to it and defined as follows:

Definition 17. [Neg-unipolar graph-PAF relation] Let g = 〈N,E,ψ〉 be a neg-unipolar

graph, and (A,R) a partition of g. The PAF theory associated to g and A is PAFA
g =

〈N,Att,�,�〉, where

• (a, b) ∈ Att iff {a, b} ∈ E

• ∀a, b ∈ A (a, b ∈ R) it holds that a ∼ b
LIPADE-TR-1 14



• ∀a ∈ A, b ∈ R it holds that a � b.

We can now interpret partitions of neg-unipolar coherence graphs in terms of exten-

sions in PAF.

Proposition 5. Let g = 〈N,E,ψ〉 be a neg-unipolar

graph, (A,R) an optimal partition of g and i(N) the nodes of g with degree 0. Then

A ∪ i(N) is the unique grounded, preferred and stable extension of PAFA
g .

Proof. For any pair of nodes a, b ∈ A, it holds by construction that a 6 �b and b 6 �a.

Similarly for R. Therefore, A (and R) is conflict-free, and therefore A ∪ i(N) is conflict-

free as well. On the other hand, the only attacks are from nodes in A to nodes in

R, therefore PAFA
g is acyclic. Therefore, its unique stable extension coincides with its

grounded extension, so we need to show that A ∪ i(N) is a stable extension.

Since it has already been proved that A ∪ i(N) is conflict-free, it suffices to show that

for any ai ∈ N \ A ∪ i(N) = R \ i(N), there is some aj ∈ A s.t. aj � ai. Clearly,

there must be a node ak ∈ N such that {ai, ak} ∈ E, because otherwise ai ∈ i(N). If

ak ∈ A the result holds. Otherwise, it must be the case that for all nodes ak ∈ N such

that {ai, ak} ∈ E, it holds that ak ∈ R. But then Str(g,A ∪ {ai}) > Str(g,A) which

contradicts the assumption that (A,R) is optimal.

Next, we introduce a relation between bipolar coherence graphs and preference-based

argumentation (PAF).

Based on definitions 7 and 16 we propose a PAF construction for bipolar graphs. To

do this, we consider that a negative arc represents an attack (or conflict) between the

linked arguments (like in the case of neg-unipolar graphs) while a positive link represents

a mutual support between the linked arguments.

Definition 18. [Bipolar graph-PAF relation]

Let g = 〈N,E,ψ〉 be a bipolar graph and (A,R) a maximally coherent partition such

that |A| ≥ |R|. Then we define the associated preference-based argumentation framework

PAFA
g = 〈N,Att,�,�〉 as follows:

• ∀{a, b} ∈ E s.t. ψ({a, b}) = −1, (a, b), (b, a) ∈ Att

LIPADE-TR-1 15



• ∀a, b ∈ A (a, b ∈ R) if (a, b) ∈ Att it holds that a ∼ b

• ∀a, b, a ∈ A and b ∈ R if (a, b) ∈ Att it holds that a � b

We can now interpret partitions of bipolar coherence graphs in terms of extensions

in PAF.

Proposition 6. Let g = 〈N,E,ψ〉 be a bipolar graph and (A,R) a maximally coherent

partition such that |A| ≥ |R|. Then A is the unique grounded, preferred and stable

extension of PAFA
g .

Proof. Let (A,R) a maximally coherent partition and A be the accepted part s.t.

|A| ≥ |R|. Let also Str(g,A) be the strength of this partition and CA the set of satisfied

constraints (see definition 2). We have to prove that A is the unique grounded, preferred

and stable extension of the associated PAFA
g . We know by construction that ∀a, b ∈ A,

(a, b) 6∈ �. So A is conflict-free. The same holds for R. We also know by construction

that ∀a, b, if a ∈ A and b ∈ R, then (a, b) ∈ �. We know that g is a connected graph so

it holds that ∀b ∈ R there exists at least a negative link coming from an argument a ∈ A

and therefore it holds that ∀b ∈ R,∃a ∈ A s.t. (a, b) ∈B. Otherwise, we could have an

argument x ∈ R that could be added to A so that we would have A′ = A ∪ {x}. By

definition 4 we know that Str(g,A) is maximal which means that in that case we would

have Str(g,A) = Str(g,A′) with |A′| > |A|. However this cannot be true because we

know that the partition (A,R) is a maximally coherent partition. Contradiction. Thus

A is also a maximal (wrt ⊆) admissible extension and therefore it is stable extension.

From the above we can also conclude that PAFA
g is acyclic. Therefore A is also grounded

and unique.

6. Coherence theory in the context of large argumentation systems

The process of building argumentation systems consists of different steps: the con-

struction of arguments, the definition of their relationships, the computation of the

strength of arguments and the computation of the status of arguments through the

use of acceptability semantics that determine which are the winning arguments. In this

process the computation of the strength of the arguments can be computationally costly
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Figure 2: Arguments interaction (or attacks) graph for sentences A1–A6.

if we have to deal with a large number of them. Our results in this research note allow

us to show that the combination of coherence theory and argumentation can be useful in

some cases. One of them is practical reasoning. We illustrate this claim with a realistic

example of practical reasoning made by a seller agent when endowed with the following

policy rules:

• A1: A customer with a loyalty card is a frequent customer and may buy High-Tech

products at a reduced price

• A2: A customer without a loyalty card is a normal customer and therefore he has

to buy High-Tech products at a high price

• A3: High-Tech products are sold at high prices

• A4: In high seasons loyalty cards are not considered and thus frequent customers are

considered as normal customers and cannot buy High-Tech products at a reduced

price

• A5: A normal customer may buy High-Tech products at a reduced price provided

she buys more than two items

• A6: A frequent customer may buy High-Tech products at a reduced price during

high season provided that her purchases are worth e 1000 or more.
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Figure 3: Neg-unipolar graph for sentences A1–A6.

The above sentences represent the practical arguments supporting different selling

decisions (i.e. prices) of the seller agent. Consider the scenario where the seller agent

needs to decide about the prices that she will offer to two potential high-tech buyer

agents, John and Mark. As in practical reasoning all the possible options (prices in

this case) are mutually incompatible, and thus conflicting, the attack relation between

the options (and therefore the supporting arguments) is necessarily symmetric (see e.g.

[10], [11]). This symmetry of conflicting arguments hinders the selection of the winning

arguments and hence it has to be broken as much as possible during the third step

of the process. The symmetry can be broken by using extra information on pairwise

comparison between arguments. This information may be preferences (see e.g. [9],[10]),

values (see e.g. [11]), the context, or a typology of agents (see e.g. [12, 13]). Based on

the strength of the arguments, the fourth step evaluates the status of the arguments via

acceptability semantics (usually via stable extensions). If several extensions exist, other

additional decision criteria may be applied in order to determine the winning arguments

(e.g. contextual criteria).

However, computing the strength of the arguments may not be easy. Obtaining

information, such as preferences or values from the user for all individual arguments,

or individual valuations of arguments, is difficult for some tens of arguments and it

is almost impossible for hundreds or thousands of arguments. Therefore, the step of
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individual argument evaluation may be a serious bottleneck for large systems. Moreover,

finding domain independent criteria to select a solution among the alternative winning

options may not be easy.

A major contribution of this research note is that we offer an alternative approach to

determine the winning options combining coherence theory and argumentation. From the

results we have obtained, we can represent the symmetric argumentation (attacks) graph

that captures the relationships between practical arguments, as a neg-unipolar graph.

Then, we know that by applying the CT algorithm for computing all the possible parti-

tions, we obtain a ranking of partitions, some of them containing stable extensions of the

corresponding argumentation system. This ranking is based on the domain-independent

criterion of global knowledge coherence and indirectly gives a ranking of the stable exten-

sions, as we have seen in Theorem 1. We then select as the accepted part of the partitions

the set that contains a stable extension. In case both parts contain stable extensions we

select the part that satisfies some domain specific (e.g. contextual knowledge) or domain

independent (e.g. maximality) criteria.

To illustrate better the proposed method, we consider the following scenario in the

high-tech purchase example: John has a loyalty card and Mark does not, we are in high

season, John has bought goods worth e 1200, and Mark bought 3 items. Figure 2 shows

the graph that represents the conflicts (or attacks) among the practical arguments sup-

porting alternative options for selling high-tech products in different cases (e.g. normal

or regular customers, normal or high season, purchase of one or several products). The

stable extensions of this graph are [{A1, A2, A6}, {A1, A5, A6}, {A2, A3, A4}, {A4, A5}].

This is the result of the second step.

Let us now move to the third step by assuming the use of frameworks, like those

in [10, 11], where preferences or values determine the strength of arguments. Based on

background knowledge, this process could render argument A1 as more preferred than ar-

gument A3 based on more specificity (i.e. frequent customers are a subset of customers),

argument A4 as more preferred than argument A1 based on contextual knowledge (i.e.

high season), argument A5 as more preferred than argument A2 and A3 as Mark has

bought 3 products, and argument A6 more preferred than arguments A3 and A4 as John

is frequent customer and paid e 1200).
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Figure 4: Graph after strength consideration.

Following the above knowledge, and by using e.g. [10, 11], some attacks (i.e. arcs)

will be removed, and the graph after the definition of the strength of the arguments will

be transformed to the one depicted in Figure 4. Moving now to the fourth step, the

evaluation of the status of the arguments following stable semantics gives only one stable

extension which contains the arguments {A1, A5, A6}.

These arguments correspond to the decisions that the seller should take, namely

selling high-tech products to both John and Mark at a low price.

If we have the possibility to apply the third step in the classical process everything is

fine. However, if we do not because of the existence of a large number of arguments to

compare and evaluate, embedding coherence theory in the argumentation process could

be an interesting alternative. Coherence theory is based on a cognitive notion of global

knowledge coherence which can be an acceptable criterion for ranking alternative options

if no other classical (e.g. based on preferences) approach is not feasible.

Let’s therefore see how it works. In the CT based approach we can compute the

partitions of the neg-unipolar graph of Figure 3. The partitions that correspond to the

stable extensions of the associated argumentation theory of Figure 2 are shown in Table

2, sorted by their strength (all other partitions are omitted for simplicity). We can

therefore see that there is a ranking where [A1, A5, A6] and [A2, A3, A4] are ranked first,

[A1, A2, A6] is ranked second and [A4, A5] is ranked third. We have to decide which is
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the accepted part in the partition [A1, A5, A6], [A2, A3, A4] where both parts correspond

to stable extensions. We can do that by considering the same criterion as before (i.e.

consideration of specific and contextual knowledge) and therefore choose [A1, A5, A6] as

the accepted part.

In this example the solution proposed by our method is the same as the one found

by the classical argumentation process.

In summary, if you have a complete definition of the preferences or values of the user

in the arguments, use the classical method. If not, you may consider building a coherence

theory of the user and embed it into an argumentation system. In this way, you would

have an alternative approach for argumentation-based practical reasoning.

The combination of coherence theory and argumentation may be useful in other

domains. One of them can be that of argumentative debates. We could for example

check the coherence of the arguments used by the opponents during a debate on a specific

topic and refuse to take into account any argument that decreases the strength of the

coherence graph that represents all the exchanged arguments during that debate. E-

justice or online dispute resolution are application domains that could take profit of

this kind of argumentative debates. Another new application domain that could use our

results is policy analytics. Here the idea is to explore how to measure, by using the notion

of coherence, the impact of governmental policies on public opinion as it is expressed in

social networks, by aggregating arguments supporting or attacking those policies.

7. Conclusion

In this research note we have presented a theoretical analysis of the relation between

argumentation and Paul Thagard’s coherence theory. We studied several connections

between the two theories by defining transformations between coherence graphs and

some well known argumentation frameworks (classical systems (AF), weighted argument

systems (WAS), and preference based argumentation frameworks (PAF)). We showed

that coherence theory can be interpreted as a weighed argument system (WAS) and

that partition maximization generates a ranking of extensions. We also saw that some

coherence graphs can be translated into PAF systems and its partitions interpreted as

PAF extensions. We have seen that based on those first results, coherence theory can
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Partitions Strength Ranking

[A1, A5, A6], [A2, A3, A4] 1 rank 1 for [A1,A5,A6] and [A2,A3,A4]

[A1, A2, A6], [A3, A4, A5] 0.83 rank 2 for [A1,A2,A6]

[A1, A2, A5, 6], [A3, A4] 0.83

[A1, A6], [A2, A3, A4, A5] 0.66

[A2, A3, A6], [A1, A4, A5] 0.66

[A1, A2, A3, A6], [A4, A5] 0.66 rank 3 for [A4,A5]

[A2, A6], [A1, A3, A4, A5] 0.50

[A3, A6], [A1, A2, A4, A5] 0.50

[A1, A3, A6], [A2, A4, A5] 0.50

[A2, A4, A6], [A1, A3, A5] 0.50

[A1, A2, A4, A6], [A3, A5] 0.50

[A3, A4, A6], [A1, A2, A5] 0.50

[A2, A5, A6], [A1, A3, A4] 0.50

[A3, A5, A6], [A1, A2, A4] 0.50

[A1, A3, A5, A6], [A2, A4] 0.50

[A2, A4, A5, A6], [A1, A3] 0.50

[A1, A2, A4, A5, A6], [A3] 0.50

[A3, A4, A5, A6], [A1, A2] 0.50

[A6], [A1, A2, A3, A4, A5] 0.33

[A4, A6], [A1, A2, A3, A5] 0.33

[A1, A4, A6], [A2, A3, A5] 0.33

[A1, A2, A3, A4, A6], [A5] 0.33

[A2, A3, A5, A6], [A1, A4] 0.33

[A1, A2, A3, A5, A6], [A4] 0.33

[A2, A3, A4, A5, A6], [A1] 0.33

[A1, A3, A4, A6], [A2, A5] 0.16

[A1, A3, A4, A5, A6], [A2] 0.16

[A1, A2, A3, A4, A5, A6] 0

Table 2: Partitions of graph in Figure 3
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be embedded into classical argumentation systems and help ranking stable extensions in

the context of practical reasoning when the comparison of arguments based on classical

methods (e.g. use of preferences) is not possible due to the size of the system (i.e. large

number of arguments to compare and evaluate).

We would like to complete the map of relations between the two fields as we believe

there are many interesting relations that are left unexplored. We, for example, plan to

study the relationship between coherence theory and bipolar argumentation [14]. Also,

we would like to extend the notion of argument to sets of nodes of a coherence graph,

i.e. sets of claims that are internally coherent.
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