
	
  

	
  
	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
   	
  

An  Abstract  Procedure  to  Compute    
Weak  Schur  Number  Lower  Bounds 

 

Bruno  Bouzy 

 

LIPADE-­‐‑TR-­‐‑N°  2  
September  2015   



An Abstract Procedure to Compute Weak Schur Number
Lower Bounds

Bruno Bouzy1

1LIPADE, Paris Descartes University, France

Abstract

In this paper, we present a new method to compute explicit solutions to the

weak Schur problem, and consequently obtain lower bounds to weak Schur

numbers WS(K) for K ≤ 8. Our method is recursive, based on the princi-

ple that good solutions to the K + 1 column problem are extensions of good

solutions to the K column problem. We make several observations on the

regularities of good solutions: (1) the last column is filled with nearly consec-

utive numbers. (2) The beginning of a column may contain holes. We test an

abstract recursive function with refinements based on these observations. We

define and implement an abstract simulation usable by Monte-Carlo search.

Consequently, our algorithms search solutions in an abstract space whose

size is several orders of magnitude smaller than the original space. Using

such tools, we discovered new bounds: WS(7) ≥ 1736 and WS(8) ≥ 5105.

Keywords: Weak Schur numbers, MAX Problems, Planning, Search

1. Introduction

The Schur problem [1] consists in finding K partitions of the interval [1, n] such that,

in any partition, no number is the sum of any other numbers in that partition. It was

proved that, for K partitions, and R operands of the sum, n has an upper bound, called

the Schur number S(K,R). When the sum is restricted to distinct numbers, this is

Email address: bruno.bouzy@parisdescartes.fr (Bruno Bouzy)

LIPADE-TR-2 September 17, 2015



referred to as the Weak Schur problem, and the lowest upper bound is the Weak Schur

number WS(K,R). WS(K,R) is the largest value of n that can be put into K partitions

when considering sums of R distinct numbers. Lower bounds and upper bounds of the

(Weak) Schur numbers have been proved [2], [3]. This problem is considered as an

interesting problem in number theory [4] [5]. Very recently, some experimental studies

have been launched to find the exact values or tighter bounds of Schur and Weak Schur

numbers for low values of K, and for R = 2. It is easier to determine Weak Schur numbers

rather than Schur numbers because of the additional constraint between the operands

of the sum. In this paper, we are interested in finding Weak Schur numbers WS(K) for

R = 2 and low values of K, but as high as possible. In the state of the art, WS(K) has

been determined for K = 1, 2, 3, 4, and lower bounded for K = 5, 6, as shown in Table

1. Various state space search techniques have been applied: exhaustive tree search [6],

tabu search [7], streamliners and constraint programming [8], and Monte-Carlo Search

[9]. S(K) has been determined for K = 1, 2, 3, 4, and lower bounded for K = 5, 6, 7, as

shown in Table 2. The best lower bounds of S(K) for K = 6, 7 are 536 and 1680 [10].

Table 1: Known values and bounds for Weak Schur Numbers.

K 1 2 3 4 5 6

WS(K) 2 8 23 66 ≥ 196 ≥ 582

Table 2: Known values and bounds for True Schur Numbers.

K 1 2 3 4 5 6 7

S(K) 1 4 13 44 ≥ 160 ≥ 536 ≥ 1680

In this paper, we present a new method to compute lower bounds of WS(K) based

on an abstract and recursive procedure RWS. We observed regularities in the solutions

built so far: the solutions contains groups of almost consecutive numbers. Therefore we

present a method which builds abstract solutions containing groups of numbers. Our

method searches for abstract solutions that stay in an abstract space. The size of the

abstract space is many orders of magnitude smaller than the size of the actual space. For

instance, for K = 6, which is the state-of-the-art number of columns so far, the size of
LIPADE-TR-2 2



the full space is 10450 that is a really huge number. We seek solutions in abstract spaces

of size 1039 or even 109 only. The reduction of the size of the space in which solutions

are searched is really huge. With our method, we confirm the values of the state of

the art for K ≤ 6 and provide new values for K = 7 and K = 8. The recursive and

abstract procedure is translated into an abstract simulation, called abstractSimulation,

to be used by Monte-Carlo Search (MCS), called abstractMCS in our work. RWS and

abstractMCS find the state-of-the-art values for K ≤ 6. Particularly, we confirm that

WS(6) ≥ 582. RWS and abstractMCS find new values for K = 7 and K = 8, showing

that WS(7) ≥ 1736 and WS(8) ≥ 5105.

The first section of this paper defines the Weak Schur problem and describes the

state of the art. The second section lists crucial observations that can be made regard-

ing high quality solutions of the Weak Schur problem. Based on these observations,

the third section presents the core idea of our method, coreRWS, and its refinement,

RWS. The fourth section presents the translation of RWS into an abstract simulation,

abstractSimulation, usable in abstractMCS. The fifth section presents the results of

the experiments performed. The sixth section discusses the results. The last section

concludes and lists possible future directions for research.

2. Weak Schur Numbers

2.1. Definition

Given a set of K columns, the problem of Weak Schur (WS) Numbers consists in

placing a series of n consecutive integers in the set of columns such that n is as large

as possible while respecting the following constraint: in a column, no integer can be the

sum of two distinct integers in the same column. WS(K) is the highest integer n such

that the series 1, ..., n can be placed into a set of K columns. For instance, with K = 1,

you may put 1 and 2 into the column but you cannot include 3 because 1 + 2 = 3. Thus

WS(1) = 2. For K = 2, you may put 1 and 2 into the first column and place 3 into the

second one. Then you have the choice of placing 4 in column 1 or in column 2, and so

on. K = 2 remains a simple puzzle. The placement of Table 3 works (where each column

is shown as a row of the table). This solution shows that WS(2) ≥ 8. No solution that

includes 9 can be found for a set of 2 columns. Therefore WS(2) = 8.
LIPADE-TR-2 3



Table 3: The optimal solution for K = 2.

1 2 4 8

3 5 6 7

More thinking for the reader is required to discover solutions for K = 3. However,

this is still possible without the use of a computer. Table 4 shows the three solutions for

K = 3.

Table 4: The three solutions A, B, C for K = 3. Obtained with a Depth-First Search.

1 2 4 8 11 22

A 3 5 6 7 19 21 23

9 10 12 13 14 15 16 17 18 20

1 2 4 8 11 17 22

B 3 5 6 7 19 21 23

9 10 12 13 14 15 16 18 20

1 2 4 8 11 16 22

C 3 5 6 7 19 21 23

9 10 12 13 14 15 17 18 20

The reader may observe that all the three solutions for K = 3 contain the solution

for K = 2 within their first two columns. Another observation is that the three solutions

are very similar. The second one (solution B) differs from the first one (solution A) only

by the position of 17 which is placed in column 1 instead of column 3. The third one

(solution C) differs from solution A only by the position of 16 which is placed in column

1 instead of column 3. For K ≥ 4, a computer is needed to find the solutions.

2.2. Related Work

A brute force method [6] showed that there are 29, 931 length-66 solutions for K = 4

and no longer solution. Thus WS(4) = 66. In the appendix, table 14 shows a length-66

solution for K = 4. This solution for K = 4 contains solution C, which is optimal for

K = 3. In 1952, Walker [5] claimed that WS(5) = 196, but he gave no explicit solution

LIPADE-TR-2 4



in his paper. Recently, several results were published. A tabu search method [7] showed

that WS(5) ≥ 196 and WS(6) ≥ 574 by giving explicit solutions. Table 16 in Appendix

B shows a length-196 solution for K = 5. This solution for K = 5 contains an optimal

solution for K = 4. A study [11] claimed that WS(6) ≥ 575 and gave a length-572

solution. A streamlined approach in a constraint programming framework [8] showed

that WS(6) ≥ 581 by giving an explicit solution. As far as we know, the most recent

work is [9], who used a standard Monte-Carlo Search (MCS) approach [12] showing that

WS(6) ≥ 582 by giving the explicit solution of Table 17. This solution for K = 6 does

not contain an optimal solution for K = 5, but contains a high quality solution (i.e., a

length-195 solution). Table 1 sums up the results of this related work. Lower bounds have

been proved by Bornzstein [13], and upper bounds by Abbott and Hanson [2], yielding

the inequalities of (1).

(44/89)89K/4 ≤ S(K) ≤WS(K) ≤ bk!kec (1)

Finally, concerning true Schur numbers, it is worth noting inequality (2) [1]. Although

it addresses true Schur numbers only, inequality (2) gives the ratio at which WS(K)

increases when K grows on average.

S(K + 1) ≥ 3S(K) + 1 (2)

3. Observations

This section makes some observations concerning the kinds of searches that have

been used to discover solutions. It defines the quality of a solution, and it discusses the

structure of the best solutions found so far in the literature. Of course, most of these

observations were already conjectured previously in the literature [7], [8], [9], but they

were not used as explicitly as we do here.

3.1. Searches

On current computers, because the branching factor is 3, and the maximal depth is

only 23, Depth-First Search (DFS) works almost instantly for K = 3. For K = 4, since

the branching factor is 4, and the maximal depth is 66, DFS cannot complete the search in
LIPADE-TR-2 5



reasonable time. Standard Monte-Carlo Search (MCS) [12] works for K = 6 as shown by

[9]. In this paper, standard MCS means that the simulations are performed by putting

the numbers mainly one by one, and by ascending order. In contrast, abstract MCS

means that an action consists in putting the numbers, group by group, still in ascending

order, either in the simulations or in the tree browsed by MCS. The underlying idea

of MCS is worth mentioning at this point. MCS is launched at a given level L and

performs a level L simulation. To perform a level L+ 1 simulation, at each point of the

L+ 1 simulation, for any legal action, MCS performs the action, and launches a level L

simulation. MCS backs up the result with the action. Then it chooses the action with the

best result, and plays it within the L+ 1 simulation. The best simulation played so far,

is also memorized. The level 0 simulations of MCS are domain-dependent simulations.

These level 0 simulations car be either standard [9] or abstract as shown by our work.

It is worth mentioning that, in our work, the term abstract refers to the idea of putting

numbers, group by group, and not to the MCS idea of nesting levels, which is another

kind of abstraction. In MCS, the higher the level, the better the quality of the simulation.

3.2. Quality of a solution

For K ≤ 4, the best solutions are proved to be optimal, and WS(K) is known exactly.

For K = 5, related work proved that 196 is a lower bound of WS(K), but WS(5) = 196

is strongly conjectured. In this paper, we say that length-196 solutions are experimentally

optimal for K = 5. We say that length-195 solutions are high quality solutions, or good

solutions. The higher the length, the higher the solution quality. For K ≥ 6, we know

lower bounds only. For K = 6, 582 is the best lower bound known so far. In this paper,

we say that length-582 solutions are experimentally optimal for K = 6. Of course,

theoretically, we do not know wether length-582 solutions are optimal or not. Future

work will say it. In this paper, we say that, for K = 6, the solutions of length not far

from 582 are high quality solutions, or “good” solutions.

3.3. High quality solutions for K+1 columns include high quality solutions for K columns

Examining the solutions informs us that they are very highly structured. This was

mentioned previously [8]. For instance, the three solutions for K = 3 contain the solution

for K = 2 in their first two columns. Furthermore, among the 29, 931 solutions for K = 4,
LIPADE-TR-2 6



there are 8, 238 extensions of solution A for K = 3, and 21, 693 extensions of solution C.

As shown in Table 16, the experimentally optimal solution for K = 5 contains an optimal

solution for K = 4. This leads to the intuitive idea that experimentally optimal solutions

for K + 1 columns include an experimentally optimal solution for K columns. However,

this assertion seems untrue: see the solution for K = 6 of Table 17, which contains a

length-195 solution for K = 5, and not a length-196 solution. If WS(6) = 582, this

assertion is false. However, more carefully, we observe that high quality solutions, for

K + 1 columns include a high quality solution for K columns.

3.4. Almost consecutive numbers in the last column are common

We observe that column K + 1 is always filled by a set of numbers that are almost

consecutive. Let us elaborate on this observation. Let First(K) be the first number put

into column K, i.e., the smallest number in column K. The first sequence of consecutive

numbers put into an empty column starts with First(K) and stops with 2× First(K).

Since 2 × First(K) + 1 = First(K) + (First(K) + 1), 2 × First(K) + 1 cannot be

put in the column. Thus, the maximal length of the sequence of consecutive numbers

starting with First(K) is First(K) + 1. Then, the length of the next longest sub-

sequences of consecutive numbers that can be added in column K later on is at most

First(K). To illustrate this point, see that column 2 (respectively 3) of most high quality

solutions contains many sub-sequences of length 3 (respectively 9) because First(2) = 3

(respectively First(3) = 9). As K is increasing, First(K) increases as well. If the first

K columns contain an optimal solution, then First(K + 1) = WS(K) + 1. If the first K

columns do not contain an optimal solution, it is intuitively good to have First(K) as

high as possible, enabling longer sub-sequences to appear in column K later on.

3.5. Holes in the middle do not help

Let [a, b] be a set of consecutive numbers in column K. (b ≤ 2a). Then interval

[2a+1, 2b−1] is forbidden to appear in column K. For any m such that a+2 < m < b−2,

if m is removed from column K, [a,m− 1]∪ [m+ 1, b] is in column K. Then the interval

[2a + 1, 2b − 1] is still forbidden to column K. This leads to the intuitive observation

that there is no reason to remove a number such as m from an interval of consecutive

LIPADE-TR-2 7



numbers such as [a, b]. We refer to m as a hole of size one in the interval [a, b]; we now

generalize to holes of larger sizes.

3.5.1. Definition

Let [m,n] be an interval where a < m ≤ n < b. Let us call [m,n] a hole in [a, b],

where s = 1 + n−m is the size of the hole.

3.5.2. Theorem

Creating a hole of size s in [a, b] after the sequence of c + 1 consecutive numbers

[a, a+ c], and before the sequence of d+ 1 consecutive numbers [b− d, b] gives the same

set of forbidden numbers, i.e., [2a+ 1, 2b− 1], provided that s < c and s < d.

3.5.3. Proof

The sets of forbidden numbers resulting from the combinations of intervals [a, a+ c]

and [b−d, b] are the union of [2a+1, 2a+2c−1], [a+b−d, a+c+b] and [2b−2d+1, 2b−1].

We have to prove that 2a+ 2c− 1 ≥ a+ b− d− 1 and that a+ c+ b ≥ 2b− 2d, i.e. that

b− a <= 2c+ d and that b− a <= c+ 2d. This is true because b− a = c+ s+ d+ 1 and

c > s and d > s.

To illustrate the fact that holes in the middle do not help, let us see the two solutions

of tables 14 and 15. The first one has been obtained with a standard MCS. Let us consider

column 4. Column 4 contains holes in the middle: 32, 38, 39 and 44. The set of forbidden

numbers of column 4 is the interval [50− 97]. The second solution is partly derived from

the first one by moving numbers 32, 38, 39 and 44 to column 4. We observe that the set

of forbidden numbers of column 4 remains the interval [50 − 97]. More specifically, the

derivation between the two solutions has two steps. First, moving numbers into column

4. Secondly, moving numbers into column 3 (16 and 58 from column 1 to column 3).

Although the two solutions have the same length, we see that the second solution has a

clear upside over the first one. First, the sets of forbidden numbers of column 3 and 4

remains identical. Secondly, the sets of forbidden numbers of columns 1 and 2 are strictly

smaller in the second solution than in the first solution. In the current work, we seek for

solutions that have the structure of the solution of table 15.

LIPADE-TR-2 8



3.6. Holes at the beginning of a column may help

Although the previous observation concerns the holes situated in the middle of a set

of consecutive numbers, it is useful to have as many holes as possible at the beginning of

a new sequence of almost consecutive numbers. This enables the creation of forbidden

numbers as far as possible in the future, which makes the sequence as long as possible.

Many columns of the solutions start with a hole after First(K) or after First(K) +N .

Therefore we defined some specific holes:

• h0: the absence of hole in the sequence,

• hN : a hole of size 1 at First(K) +N .

• hMN : the combination of hM and hN .

For instance {3, 5, 6, 7} in column 2 is a h1. {9, 10, 12, 13} in column 3 is a h2. With

a short offline paper-and-pencil study, let us estimate the gain brought about by a given

hole, hN or hMN in a given column K. Let us assume that the studied hole can be

used in column K: the numbers corresponding to the hole are assumed to be put in the

first K − 1 columns. Let NB be the gain of numbers brought about by applying a hole

in column K. NB is the difference between the additional numbers that will be put

at the end of the column and the size of the hole at the beginning of the column. Let

END be the gain in the value of the ending number of the column. NB and END are

properties to estimate the quality of the hole beforehand. Table 5 gives the values of

NB and END for each kind of hole. h0 is the reference. NB = 0 for h1 means that we

do not put the second number in the column, but we put an additional number at the

end of the column. END = 1 for h1 means that the number at the end of the column

equals the number at the end of the column if we were using h0, plus one. Concerning

h2, NB = 0 means that we do not put the third number in the column, but we put an

additional number at the end of the column. END = 2 for h2 means that the number

put at the end of the column equals the number put at the end of the column if we were

using h0, plus two. h1 and h2 are promising holes because one can expect to improve the

value of the last number of the column. h3 and h4 are not promising because they lose

one number in the column (NB = −1), and they do not increase the value of the last

LIPADE-TR-2 9



number of the column (END = 0). Holes of size 2 are promising because one can expect

to improve the value of the last number of the column by 2, 3, or even 4. The greater

the size of the hole, the better its possible consequences in terms of NB and END, but,

unfortunately, the lower the chance that the numbers corresponding to the hole can be

actually inserted into the previous columns.

Table 5: Gains brought about by holes (hN or hMN), in terms of NB (the number of numbers placed

in the column) and END (the ending number of the column).

hN h0 h1 h2 h3 h4

NB 0 0 0 -1 -1

END 0 1 2 0 0

hMN h12 h13 h14 h23 h34

NB 0 0 0 0 -1

END 2 3 4 3 4

4. An Abstract and Recursive Procedure

This section describes an abstract and recursive procedure RWS to find solutions to

the Weak Schur problem. First, it gives the basic idea with its core abstract procedure,

coreRWS. Secondly, it describes the refinements to the procedure so as to actually find

solution with high quality. From now on, the set of columns is named the board. In

addition, a board B has a field B.smallestOut which is the smallest number not put in

a column of board B. In all the procedures, the numbers are put in ascending order.

Therefore, B.smallestOut is the next number to consider, and B.smallestOut− 1 is the

number of consecutive numbers already put into board B.

4.1. The basic idea with its core procedure

We observed that the good solutions for K columns are made up of:

1. a high quality solution for K − 1 columns,

2. a sequence of almost consecutive numbers in column K, and

3. another solution for the first K − 1 columns.

LIPADE-TR-2 10



int coreRWS(B,K) ;

begin

If K > 1 coreRWS(B,K − 1) ;

fillColWithConsecutiveN(B,K) ;

If K > 1 coreRWS(B,K − 1) ;

return B.smallestOut− 1 ;

end

Algorithm 1: The core RWS procedure.

The core of the procedure RWS follows this structure (Algorithm 1). First, starting

with B.smallestOut = 1, coreRWS (B,K − 1) fills the first K − 1 columns with a

good solution. Secondly, starting with the new value of B.smallestOut, fillCol With

Consecutive N(B,K) fills column K with the longest sequence of consecutive numbers.

Thirdly, starting with the new value of B.smallestOut, coreRWS(B,K−1) fills the first

K−1 columns with a good solution again. Finally, B.smallestOut−1, the length of the

solution, is returned.

Table 6 gives the solution output of coreRWS(B, 2). For clarity, assuming that (1)

a message is output at the beginning and at the end of each call of coreRWS, and (2)

the numbers put into a column are also output, we give the output of coreRWS called

for K = 2 in table 7. coreRWS fills 1 and 2 in the first column; 3 cannot be put into

column 1 because 1 + 2 = 3. 3, 4, 5, 6 are put in the second column; 7 cannot be put in

column 2 because 3 + 4 = 7; 7 is put in the first column.

Table 8 gives the solution output of coreRWS(B, 3). For clarity, the output of

coreRWS called for K = 3 is given by table 9. coreRWS fills the first two columns

with the numbers from 1 up to 7 by the first call to coreRWS(B, 2), then 8 to 16 are

put in the third column. 17 cannot be put in column 3 because 8 + 9 = 17. Then, the

second call to coreRWS(B, 2) start by considering 17. 17 is put in the first one, 18 up

to 20 in the second one, 21 in the first one, and stops. 22 cannot be put in the first three

columns because 21 + 1 = 22, 19 + 3 = 22, and 14 + 8 = 22. The solutions obtained, if

not optimal, are solutions with good quality: 7 instead of 8 for K = 2, and 21 instead of

23 for K = 3.

LIPADE-TR-2 11



Table 6: A good solution for K = 2 obtained by coreRWS(B, 2).

1-2 7

3-6

Table 7: Output of coreRWS(B, 2).

coreRWS: begin, K = 2

coreRWS: begin, K = 1

FillCol 1: 1 2

coreRWS: end, K = 1

FillCol 2: 3 4 5 6

coreRWS: begin, K = 1

FillCol 1: 7

coreRWS: end, K = 1

coreRWS: end, K = 2

Table 10 gives the lengths of the sequences built by coreRWS for K = 1 up to

K = 10. As expected, given the simplicity of coreRWS, compared to the state of the

art, the values are not positive contributions. For K ≤ 6, the values are clearly inferior

to the state of the art. Previous work on true Schur numbers experimentally proved that

S(7) ≥ 1680 [10]. Since inequalities (1) and (2) hold for any K, the values for K ≥ 7

has a low quality. However, it is worth noting that coreRWS is very simple and finds

its results instantly on current computers. Next, we shall see how coreRWS can be

enhanced with important refinements.

4.2. Important refinements

Because the optimal solutions contain holes, and because they result from maxi-

mization, coreRWS needs refinements. The first refinement consists in calling Depth-

First-Search (DFS) when K ≤ 3. This is possible because DFS performs its solution

instantly when K ≤ 3. This way, the placement of numbers in the first three columns

will be always correct.

The second refinement consists in considering holes of given types when filling column

LIPADE-TR-2 12



Table 8: A good solution for K = 3 obtained by coreRWS(B, 3).

1-2 7 17 21

3-6 18-20

8-16

K. This refinement is important because it leads the search of abstract solutions into an

adequate subspace of solutions structured as observed in the previous section. Let us call

SetOfConsideredHoles the set of holes considered. To fix ideas, h0, h1, h2, h12, h13,

h14, and h23 are in SetOfConsideredHoles. This set can be widened to other holes or

reduced. The third refinement consists in maximizing the length of the sequences over

the possible holes. This gives Algorithm 2.

First, if K is less or equal than 3, this is the special case where DFS is called.

In such case, smallB is the sub-board of B made up with the first 3 columns of B.

DFS is called on this board. Then smallB is copied into the first 3 columns of B

with modifyF irst3ColOfWith(B, smallB), and RWS returns. In other cases, RWS

calls itself on the first K − 1 columns. Then, lmax and bestB are declared to con-

tain the current best information so far. SetOfMatchingHoles is built with buildSet

OfMatchingHoles (B). Among SetOfConsideredHoles, buildSet OfMatching Holes

(B) looks which holes could be actually put in the beginning of the sequence of consec-

utive numbers. To see this, for a given hole H, buildSet OfMatching Holes (B) tests

putting the numbers corresponding to H into the set of K-1 columns. If the test succeeds,

H is inserted into SetOfMatchingHoles. SetOfMatchingHoles being built, the loop

is performed for each hole Hole in SetOfMatchingHoles. B2 is a working board set to

B at the beginning of each iteration of the loop. fillCol WithHole (B2,K,Hole) fills

column K according to the specification of Hole. fillColWith ConsecutiveN (B2,K)

remains identical as previously. fillEndCol (B2,K) fills column K so as to put the

highest number as possible in it. To do this, creating holes in the end of column K is

allowed provided that the numbers corresponding to these holes can be put in the first

K−1 columns of B2. bestB and lmax are updated when an improvement is seen. Before

returning the length of the best sequence, bestB is copied into B.

LIPADE-TR-2 13



Table 9: Output of coreRWS(B, 3).

coreRWS: begin, K = 3

coreRWS: begin, K = 2

coreRWS: begin, K = 1

FillCol 1: 1 2

coreRWS: end, K = 1

FillCol 2: 3 4 5 6

coreRWS: begin, K = 1

FillCol 1: 7

coreRWS: end, K = 1

coreRWS: end, K = 2

FillCol 3: 8 9 10 11 12 13 14 15 16

coreRWS: begin, K = 2

coreRWS: begin, K = 1

FillCol 1: 17

coreRWS: end, K = 1

FillCol 2: 18 19 20

coreRWS: begin, K = 1

FillCol 1: 21

coreRWS: end, K = 1

coreRWS: end, K = 2

coreRWS: end, K = 3

4.3. Other refinements

The first criterion to evaluate a K-column solution is its length: the longer, the

better. However, since a K-column solution is intended to be used within a (K + 1)-

column solution, we want to distinguish two K-column solutions with a same length

with another criterion that reflects its ability to be continued later on. This criterion

must take into account the presence or absence of future forbidden numbers. When a

K-column solution is completed, B.smallestOut cannot be put in any of the K columns,

so it will be put in column K + 1. After this, the more allowed numbers in the first K

columns, the better. Furthermore, the nearer the allowed numbers to B.smallestOut,

the better. This process enables the creation of holes in column K + 1. We define C2

the second criterion, with Equation 3. However, in practice, the sum is finite. Actually,
LIPADE-TR-2 14



Table 10: Values output by coreRWS.

K 1 2 3 4 5

WS(K) 2 7 21 61 180

K 6 7 8 9 10

WS(K) 536 1593 4733 13880 40844

five terms are sufficient.

C2 =

∞∑
n=1

A(n)2−n (3)

A(n) =

1 if smallestOut+ n is allowed

0 if smallestOut+ n is forbidden

Since we want to use a Monte-Carlo approach in our experiments, we use randomness

in the solution evaluations. We used a third criterion C3 defined with Equation 4. Finally,

the evaluation of a solution is given by Equation 5 with λ ∈ [0, 1]. E is called by DFS

on terminal boards. The actual value of λ is set experimentally. λ = 0.5 works well.

C3 = (rand()%100)/100 (4)

E = length+ λC2 + (1− λ)C3 (5)

For instance, for the 2-column solution of table 3, smallestOut = 9, 10, 12 are

forbidden. 11, 13 and followers are allowed. Therefore, C2 = 0.25 + 0.125 = 0.375 and

length + C2 = 8.375. For the 2-column solution of table 6, smallestOut = 8, 9 are

forbidden. 10 and followers are allowed. Therefore, C2 = 0.5 and length+ C2 = 7.5.

5. An abstract simulation for MC Search

As shown later on, the recursive procedure RWS produces very good results. How-

ever, it has a visible weakness. It locally maximizes the lengths of solutions within the

call with K − 1 columns. It does not maximize globally over the whole process with K

LIPADE-TR-2 15



int RWS(B,K) ;

begin

if K ≤ 3 then

smallB = first3ColOf(B) ;

DFS(smallB) ;

modifyF irst3ColOfWith(B, smallB) ;

return B.smallestOut− 1 ;

end

RWS(B,K − 1) ;

lmax = 0 ;

bestB = nil ;

SetOfMatchingHoles = buildSetOfMatchingHoles(B) ;

for Hole in SetOfMatchingHoles do

B2 = B ;

fillColWithHole(B2,K,Hole) ;

fillColWithConsecutiveN(B2,K) ;

fillEndCol(B2,K) ;

RWS(B2,K − 1) ;

if lmax < B2.smallestOut− 1 then

lmax = B2.smallestOut− 1 ;

bestB = B2 ;

end

end

B = bestB ;

return lmax ;

end

Algorithm 2: The RWS procedure with its refinements.

columns. Therefore, we need to replace RWS by a new procedure that would maximize

globally. Since MCS [12] was proved to work on the weak Schur problem [9], we want to

use MCS with RWS as well. However, RWS cannot be used as such by MCS. MCS needs

LIPADE-TR-2 16



to call a simulation that can start at any point of the RWS procedure. We need to flat-

ten RWS into a simulation usable by MCS. We call this procedure abstractSimulation.

The term abstract still reflects that numbers are put, group by group, into the columns.

abstractSimulation can be called as a level 0 simulation in the framework of MCS. The

top-level of MCS must be changed as well. At any step of a level L simulation, the set of

holes matching the board must be computed. At any step, the set of actions corresponds

to the set of holes matching the board. Abstract MCS mentions that the top-level of

MCS is changed as above and uses abstractSimulation as level 0 simulations. To this ex-

tent, the contribution of our work is to show that abstract MCS computes lower bounds

for K ≤ 8, while standard MCS does the same for K ≤ 6 only.

We translated RWS into abstractSimulation. abstractSimulation is a procedure it-

erating on stages. In coreRWS, a stage corresponds to a call to fill ColWith ConsecutiveN

(Kloc). In table 9, there are 3 columns and 7 stages, each one corresponds to filling a

specific column. On this example, the seven stages corresponds to filling columns 1, 2,

1, 3, 1, 2, 1 in this order. Processing coreRWS for K columns corresponds to 2K − 1

stages. Let stageN be the stage number. stageN being given, it corresponds a unique

column Kloc = stageNToCol(stageN), where stageNToCol (m) is the number of di-

visions of m to get an odd remainder. stageNToCol(1) = 1, stageNToCol(2) = 2,

stageNToCol(3) = 1, stageNToCol(4) = 3, and so on. Therefore, if one wants to

translate coreRWS into a simulation, the simulation should be divided into 2K − 1

stages. In RWS, a stage corresponds to the calls to fillCol WithHole, fillCol With

ConsecutiveN , and fillEndCol (B2,K).

Similarly, processing RWS for K columns (K ≥ 3) corresponds to 2K−2 − 1 stages.

Therefore, in order to translate coreRWS into an abstract simulation, the simulation

should be divided into 2K−2− 1 stages. Algorithm 3 shows the pseudo-code correspond-

ing to an abstract simulation. abstractSimulation can be used in MCS as a level 0

simulation. MCS can be called at any nesting level. The higher the level, the better the

solutions, the longer the execution time.

First, K ≤ 3 is a special case: DFS is used. Otherwise, the loop over the stages

is entered. For each stage, the corresponding column Kloc is determined. Then, for

each iteration, if column Kloc ≤ 3, then DFS is called to fill the first three columns.

LIPADE-TR-2 17



int abstractSimulation(B,K) ;

begin

if K ≤ 3 then

smallB = first3ColOf(B) ;

DFS(smallB) ;

modifyF irst3ColOfWith(B, smallB) ;

return B.smallestOut− 1 ;

end

NOfStages = 2K−2 − 1 ;

for stageN ≤ NOfStages do

Kloc = 2 + stageNToCol(B, stageN) ;

if Kloc ≤ 3 then

smallB = first3ColOf(B) ;

DFS(smallB) ;

modifyF irst3ColOfWith(B, smallB) ;

end

else

Set = buildSetOfMatchingHoles(B) ;

Hole = holeRandomChoice(Set) ;

fillColWithHole(B,Kloc,Hole) ;

fillColWithConsecutiveN(B,Kloc) ;

fillEndCol(B,Kloc) ;

end

stageN + + ;

end

return B.smallestOut− 1 ;

end

Algorithm 3: The abstract simulation for MC search.

Otherwise, column Kloc is filled with the filling strategy of a hole drawn at random in

Set, the set of possible holes matching board B. The process of matching holes with

LIPADE-TR-2 18



board B is identical to the one used in RWS. At the end, the length is returned. Then,

abstractSimulation can be used within MC search as a level 0 simulation.

6. Experiments

We used a 3.2 Ghz computer. For K ≤ 8, memory use was not a concern, but

the time used was. We set up λ ∈ [0.5, 0.6]. Table 11 gives the values found with

RWS and abstractMCS for K ≤ 8. The quality of solutions found by abstractMCS

increases with the nesting level used. However, the time used by level L+ 1 is an order

of magnitude greater than the time used by level L. The order of magnitude is linear

in the branching factor, and linear in the depth of the search. We used a nesting level

enabling abstractMCS to find good solutions in few hours and not more. For K ≤ 6,

level 3 was sufficient to reproduce state-of-the-art results. Therefore, we think that level

3 is a good setting to launch abstractMCS to find lower bounds which are tight enough.

Table 12 gives a solution obtained for K = 6 with abstractMCS at level 3 in 45 minutes.

Table 18 gives a solution obtained for K = 7 with abstractMCS at level 3 in 4 hours.

Table 19 gives a solution obtained for K = 8 with abstractMCS at level 2 in 6 hours.

Processing abstractMCS at level 3 for K = 8 could not produce any result before one

day, and was interrupted before completion.

We think that the result obtained for K = 7 (1736) has a good quality. At least, it

improves the lower bound brought about by the lower bound found for K = 7 on the

true Schur problem (1680) [10]. 1736 is not far from 1746 = 3× 582, 582 being the best

lower bound found for K = 6. We think that the result obtained for K = 8 (5105) has

an intermediate quality. On the one hand, it is obtained at level 2 only. On the other

hand, 5105 is superior to 5041 = 3 × 1680 + 1, the lower bound brought about by [10]

and equation 2. Given the limited quality obtained for K = 8 and the execution time

used, we did not launch the experiment for K = 9.

Table 11: Best values found by RWS and abstractMCS.

K 1 2 3 4 5 6 7 8

WS(K) 2 8 23 66 196 582 1736 5105

LIPADE-TR-2 19



Table 12: One solution for K = 6 obtained with an abstract Monte-Carlo Search.

1-2 4 8 11 16 22 25 53 63 68 136 149 154 177 182 192 197 394 407 412 435 440 450

455 521 526 531 536 541 564 569 582

3 5-7 19 21 23 50-52 64-66 137-139 150-152 179-181 193-195 395-397 408-410 437-439

451-453 523-525 537-539 566-568 579-581

9-10 12-15 17-18 20 54-62 140-148 183-191 398-406 441-449 527-530 532-535 570-578

24 26-49 153 155-176 178 411 413-434 436 540 542-563 565

67 69-135 454 456-520 522

196 198-393

We also observed the contribution of each kind of hole. h0 is always used by definition.

h1 and h2 enable the algorithms to find WS(6) ≥ 582. As expected, h3 and h4 do not

help. h12, h13, h14 and h23 were included: they enhance the probability of finding

WS(6) ≥ 582. We did not use any other kind of hole in this set of experiments.

7. Discussion

An open question is whether an optimal solution for K + 1 columns is always an

extension of an optimal solution for K columns. Since the current best solution for

K = 6 is not an extension of a current best solution for K = 5, the answer may be

negative. However, we think this is a false question, because it is more accurate to say

that a high quality solution for K+1 columns is an extension of a high quality solution for

K columns. This was the insight we followed to uncover RWS solutions. This property

is correct for K less or equal than 8. We do not know if this property persists as K

grows.

Our solutions are more compact than previous state-of-the-art solutions, particularly

for columns with high K. To see this for K = 6, let us compare the abstractMCS

solution of Table 12 with the MCS solution of Table 17. In column 1, there are fewer

numbers. In column 2 of both solutions, the numbers are grouped 3 by 3, but the

abstractMCS solution has fewer groups, and thus fewer numbers. Similarly for column

3 and 4. Conversely, in column 6, the abstractMCS solution has one long group of

LIPADE-TR-2 20



consecutive numbers (with one hole), and the MCS solution has many medium-size

groups of consecutive numbers. Using the notation a−b, column 6 expression is far shorter

in the abstractMCS solution than in the MCS solution. In column 5, the abstractMCS

solution has two groups of consecutive numbers (with one hole in the first group and two

holes in the second one), and the MCS solution has many groups of consecutive numbers

with various sizes. Again, using the notation a− b, column 5 expression is far shorter in

the abstractMCS solution than in the MCS solution. Finally, the reader may observe

that the abstractMCS solution has 1 group in column K, 2 groups in column K − 1,

and more generally 2K−k groups in column k, i.e., approximately (without counting the

times where column 1 is a relay of a hole in column K) 2K−1 numbers in column 1.

Why our method work for K ≤ 8 while previous methods worked for K ≤ 6 only? Our

research uses an abstraction consisting in grouping numbers. This abstraction reduces

the size of the space searched by several order of magnitudes. First, let us consider the

size of the tree browsed by our algorithms with or without abstraction. With K columns

and without abstraction, the depth of the tree roughly equals WS(K), and the branching

factor is K. An estimation of the size of the tree is KWS(K). With K columns and with

abstraction, the depth of the tree equals 2K − 1, and the branching factor is min(H,K),

where H is the number of holes matching the board. An upper bound of H is 4. An

estimation of the size of the tree with abstraction is H2K−1. Secondly, our algorithms

use DFS when K ≤ 3. With DFS used, the depth of the abstract tree equals 2K−2 − 1

only. Table 13 yields the estimations of the tree sizes for K ≤ 8. The numbers clearly

show that using our abstraction and DFS greatly shortens the size of the searched space

by several orders of magnitude, and enables our algorithms to work with K = 7, 8.

Table 13: Estimations of the size of the tree without abstraction (raw), with abstraction and without

DFS (abs), and with abstraction and DFS (a+d).

K 5 6 7 8

raw KWS(K) 10137 10450 101400 104500

abs H2K−1 1019 1039 1079 10159

a+d H2K−2−1 105 109 1019 1039

In our experiments, we used the set of holes SetH = {h0, h1, h2, h12, h13, h14, h23}.
LIPADE-TR-2 21



To what extent the content of SetH modifies the results obtained remains an open

direction for future investigation.

Is 196 optimal for K = 5 ? Is 582 optimal for K = 6 ? These two questions remains

theoretically open. These values remain lower bounds. However, the current work is yet

another work that cannot surpass 196 and 582. The chance that these numbers are really

the Weak Schur numbers for K = 5 and K = 6 increases. Actually, with H ≤ 4, for

K = 5, 6, the sizes of the searched spaces are small (105 and 109), and there is very few

chances that our search missed the optimal solution if it has the structure we look for.

We discovered a first solution for K = 7 with length 1736, and a first one for K = 8

with length 5105, which constitute lower bounds to improve.

Is our method complete ? Our method is on a par with previous records for K ≤ 6

and was the first method to find values for K = 7 and K = 8. Our method covers all

previous results and extends them for K = 7 and K = 8. However, our method seeks

for solutions in a sub-space of the solution space only. If the optimal solutions stay out

of this sub-space, our method is not complete.

The process by which RWS fills the K columns looks like the complementary of the

construction of the first K steps of the Cantor set. For K = 1, the set of numbers in

column 1 corresponds to the [0, 1] interval. For K = 2, the set of numbers in column 2

corresponds to the [1/3, 2/3] interval, and the set of numbers in column 1 corresponds to

the [0, 1/3] and [2/3, 1] intervals. For K = 3, the set of numbers in column 3 corresponds

to the [1/3, 2/3] interval, and the set of numbers in column 2 corresponds to the [1/9, 2/9]

and [7/9, 8/9] intervals, and the set of numbers in column 1 corresponds to the [0/9, 1/9],

[2/9, 3/9], [6/9, 7/9] and [8/9, 1] intervals. This pattern continues for higher values of K.

With this correspondence, it is worth noting that a number situated in column k in

a RWS solution would correspond to a number in [0, 1] whose base 3 representation

contains 0 or 2 only in the first K − k digits and a 1 at the K − k + 1 digit.

Can our method be adapted for true Schur numbers? The answer is negative. It is

known that S(1) = 1, S(2) = 4, S(3) = 13, and S(4) = 44 [14], [15]. In our experiments

performed on true Schur numbers, we observed that RWS could find the correct S(K)

for K ≤ 3 but found out 40 only for K = 4. Furthermore, the explicit sequences of

length 44 found for K = 4 [14] and for K = 6, 7 [10] do not match the structure of

LIPADE-TR-2 22



sequences produced by RWS. Therefore, adapting our method to true Schur numbers

remains as future work. To deal with true Schur numbers in a similar way as we did in

the current work, we have to seek a structure in the solutions, and design a method that

would produces solutions with such structure.

8. Conclusion

In this work, we presented a new method to compute lower bounds of Weak Schur

numbers. It is an abstract and recursive method based on the principle that high quality

solutions for K + 1 columns are extensions of high quality solutions for K columns. It is

based on two main observations. First, the last column can be filled with almost consecu-

tive numbers, and making holes in the middle of a sequence of consecutive numbers does

not help. Secondly, making holes at the beginning of a sequence is appropriate because

it lengthens the end of the sequence. Our method computes abstract solutions. Rather

than putting the numbers one by one into the column, our method puts groups of almost

consecutive numbers in the columns. We explicited two recursive and abstract procedures

to approximate WS(K): coreRSW , the basic version, and RWS, the refined version.

We also translated RWS into the procedure abstractSimulation, an abstract simulation

which can be launched within Monte-Carlo Search. By doing so, the size of the studied

space is smaller than the size of the whole space by several orders of magnitude. This

size reduction enabled our method to deal with problems for K = 7, 8, where previous

methods only dealt with problems for K ≤ 6. Our method confirmed the previous lower

bounds found for K ≤ 6. Furthermore, our method found new lower bounds for K = 7

and K = 8. Our approach, either with RWS or with abstractSimulation within MCS,

proves that WS(6) ≥ 582, WS(7) ≥ 1736 and WS(8) ≥ 5105.

Next, several followings of this research are foreseeable. First, we aim to compute

high quality lower bounds for K ≥ 9. Secondly, we aim to adapt our method for true

Schur numbers. Thirdly, we seek to discover better theoretical lower and upper bounds

based on the current work.

LIPADE-TR-2 23



References

[1] I. Schur, Uber die kongruenz xm + ym = zm(modp), Jahresbericht des Deustchen Mathematiker

Vereinigung 25 (1916) 114–117.

[2] H. Abbott, D. Hanson, A problem of Schur and its generalizations, Acta Arithmetica 20 (1972)

175–187.

[3] R. W. Irving, An extension of Schur’s theorem on sum-free partitions, Acta Arithmetica.

[4] R. Rado, Some solved and unsolved problems in the theory of numbers, The Mathematical Gazette

25 (264) (1941) 72–77.

[5] G. Walker, A problem in partitioning, American Math. Monthly 59 (253).

[6] P. F. Blanchard, F. Harary, R. Reis, Partitions into sum-free sets, Integers A7 (6).

[7] D. Robilliard, C. Fonlupt, V. Marion-Poty, A. Boumaza, A multilevel tabu search with backtracking

for exploring weak Schur numbers, in: Proceedings of Evolution Artificielle, 2011.

[8] R. L. Bras, C. P. Gomes, B. Selman, From streamlined combinatorial search to efficient constructive

procedures, in: Proceedings of AAAI-12, 2012.

[9] S. Eliahou, C. Fonlupt, J. Fromentin, V. Marion-Poty, D. Robilliard, F. Teytaud, Investigating

Monte-Carlo methods on the weak Schur problem, in: M. Middendorf, C. Blum (Eds.), Evolutionary

Computation in Combinatorial Optimization, Vol. 7832 of Lecture Notes in Computer Science,

Springer Berlin Heidelberg, 2013, pp. 191–201.

[10] H. Fredricksen, M. M. Sweet, Symmetric sum-free partitions and lower bounds for schur numbers,

Electronic Journal of Combinatorics 7 (1) (2000) 1–9.

[11] S. Eliahou, J. M. Maŕın, M. P. Revuelta, M. I. Sanz, Weak Schur numbers and the search for G.

W. Walker’s lost partitions, Computers and Mathematics with Applications 63 (1) (2012) 175–182.

[12] T. Cazenave, Nested Monte-Carlo Search, in: IJCAI, 2009.

[13] P. Bornzstein, On an extension of a theorem of Schur, Acta Arithmetica 101 (2002) 395–399.

[14] H. Abbott, L. Moser, Sum-free sets of integers, Acta Arithmetica 11 (1966) 393–396.

[15] L. Baumert, Sum-free sets, unpublished (1961).

Appendix

This section gathers solutions mentioned above.

LIPADE-TR-2 24



Table 14: One solution for K = 4. (This solution was obtained with a normal Monte-Carlo Search, and

not with our abstract Monte-Carlo Search.)

1 2 4 8 11 16 22 25 32 44 53 58 63

3 5-7 19 21 23 38 39 50-52 64-66

9 10 12-15 17 18 20 54-57 59-62

24 26-31 33-37 40-43 45-49

Table 15: Compact solution for K = 4, derived from solution of table 14. The derivation has two steps.

First, moving numbers into column 4 without altering the set of forbidden numbers of column 4 (32

and 44 from column 1 to column 4, and 38-39 from column 2 to column 4). Secondly, moving numbers

into column 3 without altering the set of forbidden numbers of column 3 (16 and 58 from column 1 to

column 3).

1 2 4 8 11 22 25 53 63

3 5-7 19 21 23 50-52 64-66

9 10 12-18 20 54-62

24 26-49

Table 16: One solution for K = 5, obtained with normal Monte-Carlo Search.

1 2 4 8 11 16 22 25 31 45 50 60 63 69 106 135 140 150 155 178 183 196

3 5-7 19 21 23 35 51-53 64-66 77-79 137-139 151-153 180-182 193-195

9 10 12-15 17 18 20 54-59 61 62 99-105 141-149 184-192

24 26-30 32-34 36-44 46-49 98 154 156-177 179

67 68 70-76 80-97 107-134 136

LIPADE-TR-2 25



Table 17: The solution for K = 6 [9].

1-2 4 8 11 22 25 40 50 63 68 73 82 87 92 97 116 121 133 139 149 154 159 177 182

187 192 197 252 304 342 370 394 407 412 417 435 440 445 450 455 464 469 474 479

488 493 502 507 521 526 536 541 554 564 569 582

3 5-7 19 21 23 37 51-53 64-66 79-81 93-95 109-111 122-124 136-138 150-152

167-168 179-181 193-195 368 395-397 408-410 424-425 437-439 451-453 465-467

480-482 495-497 512 523-525 537-539 551-553 566-568 579-581

9-10 12-18 20 54-62 103-108 140-148 183-186 188-191 398-406 441-444 446-449

486-487 490 492 494 527-535 570-578

24 26-36 38-39 41-49 98-102 153 155-158 160-166 169-176 178 292 411 413-416

418-423 426-434 436 540 542-550 555-563 565

67 69-72 74-78 83-86 88-91 96 112-115 117-120 125-132 134-135 454 456-463 468

470-473 475-478 483-485 489 491 498-501 503-506 508-511 513-520 522

196 198-251 253-291 293-303 305-341 343-367 369 371-393

LIPADE-TR-2 26



Table 18: One solution for K = 7 obtained with an abstract Monte-Carlo Search.

1-2 4 8 11 16 22 25 50 63 68 136 149 154 177 182 187 192 197 394 397 407 412

435 440 450 455 521 526 531 536 541 564 569 582 1170 1175 1180 1185 1208 1213

1218 1223 1228 1294 1299 1309 1314 1337 1342 1355 1555 1565 1570 1593 1598

1603 1608 1613 1679 1684 1694 1699 1722 1727

3 5-7 19 21 23 51-53 64-66 137-139 150-152 179-181 193-195 395-396 408-410

437-439 451-453 523-525 537-539 566-568 579-581 1167-1169 1181-1183 1210-1212

1224-1226 1296-1298 1310-1312 1339-1341 1352-1354 1552-1554 1566-1568 1595-1597

1609-1611 1681-1683 1695-1697 1724-1726

9-10 12-15 17-18 20 54-62 140-148 183-186 188-191 398-406 441-449 527-530

532-535 570-578 1171-1174 1176-1179 1214-1217 1219-1222 1300-1308 1343-1351

1556-1564 1599-1602 1604-1607 1685-1693 1728-1736

24 26-49 153 155-176 178 411 413-434 436 540 542-563 565 1184 1186-1207 1209

1313 1315-1336 1338 1569 1571-1592 1594 1698 1700-1721 1723

67 69-135 454 456-520 522 1227 1229-1293 1295 1612 1614-1678 1680

196 198-393 1356-1551

583-1166

LIPADE-TR-2 27



Table 19: One solution for K = 8 obtained with an abstract Monte-Carlo Search.

1-2 4 8 11 22 52 55 62 67 137 147 152 178 181 188 193 389 399 405 430 435 440 445

510 515 525 531 556 559 566 571 1145 1155 1161 1186 1189 1196 1201 1266 1271 1281

1286 1309 1315 1322 1327 1518 1523 1533 1561 1564 1567 1574 1579 1644 1649 1659

1687 1690 1700 1705 3410 3413 3423 3451 3454 3457 3464 3469 3534 3539 3549 3555

3580 3585 3590 3595 3786 3791 3801 3806 3832 3835 3842 3847 3912 3917 3927 3932

3955 3968 3973 4542 4547 4552 4557 4562 4588 4591 4598 4603 4668 4673 4683 4711

4724 4729 4920 4925 4935 4966 4976 4981 5046 5051 5061 5066 5089 5102

3 5-7 19 21 23 49-51 63-65 134-136 148-150 175-177 189-191 386-388 400-402 427-429

441-443 512-514 526-528 553-555 567-569 1142-1144 1156-1158 1183-1185 1197-1199

1268-1270 1282-1284 1310-1312 1323-1325 1520-1522 1534-1536 1562-1563 1575-1577

1646-1648 1660-1662 1688-1689 1701-1703 3411-3412 3424-3426 3452-3453 3465-3467

3536-3538 3550-3552 3577-3579 3591-3593 3788-3790 3802-3804 3829-3831 3843-3845

3914-3916 3928-3930 3956-3958 3969-3971 4544-4546 4558-4560 4585-4587 4599-4601

4670-4672 4684-4686 4712-4714 4725-4727 4922-4924 4936-4938 4963-4965 4977-4979

5048-5050 5062-5064 5090-5092 5103-5105

9-10 12-18 20 53-54 56-61 138-146 179-180 182-187 390-398 431-434 436-439 516-524

557-558 560-565 1146-1154 1187-1188 1190-1195 1272-1280 1313-1314 1316-1321

1524-1532 1565-1566 1568-1573 1650-1658 1691-1699 3414-3422 3455-3456 3458-3463

3540-3548 3581-3584 3586-3589 3792-3800 3833-3834 3836-3841 3918-3926 3959-3967

4548-4551 4553-4556 4589-4590 4592-4597 4674-4682 4715-4723 4926-4934 4967-4975

5052-5060 5093-5101

24-48 151 153-174 403-404 406-426 529-530 532-552 1159-1160 1162-1182 1285

1287-1308 1537-1560 1663-1686 3427-3450 3553-3554 3556-3576 3805 3807-3828 3931

3933-3954 4561 4563-4584 4687-4710 4939-4962 5065 5067-5088

66 68-133 444 446-509 511 1200 1202-1265 1267 1578 1580-1643 1645 3468

3470-3533 3535 3846 3848-3911 3913 4602 4604-4667 4669 4980 4982-5045 5047

192 194-385 1326 1328-1517 1519 3594 3596-3785 3787 4728 4730-4919 4921

570 572-1141 3972 3974-4541 4543

1704 1706-3409

LIPADE-TR-2 28


