

Compressed-memory Mapped-vectors Using
Traditional and Deep Neural Network Compression Algorithms

Themis Palpanas
Senior Member of Institut Universitaire de France (IUF)

University of Paris
themis.palpanas@u-paris.fr

Kostas Zoumpatianos
Harvard University

kostas@seas.harvard.edu

[Motivation] ​Given the large amounts of data that modern organizations need to store and process,
compression has emerged as one of the fundamental ways used to reduce storage overheads. It is a crucial
part of fields as diverse as networking, data processing and databases, as well as machine learning. There
exist various open source libraries that implement different kinds of algorithms, including ​LZW [1], ​Delta and
Delta-delta encoding [2], ​XOR based encoding [2], ​Snappy [3], as well as novel ​deep neural network
based compression algorithms ​like Bit-Swap [4]. Nevertheless, there is no easy to use ​STL vector
replacement for C++​, which transparently exposes them to the user.
[Goal] ​To fill this gap, in this project we will develop a ​thread-safe, ​STL compatible vector implementation
for ​C++​, backed in tertiary storage through memory mapped files [5]. ​This will allow applications to scale to
multi-TB compressed datasets, transparently to the user. It will be implemented as a templated library which
will support multiple C++ primitive types and compression methods.
[​Challenges] ​The main challenges of this project are around ​optimally scheduling compression and
decompression operations ​of ​variable-length compressed segments​. Specifically, each time that an
element of the vector is accessed, the relevant compressed chunk(s) should be retrieved from the memory
mapped file, decompressed and buffered, given a certain memory budget. Because of the nature of memory
mapped files, compressed chunks should have a fixed size, which in the presence of updates, could be
required to expand to more than one chunk. This can cause the array to be fragmented. In order to navigate
such fragmented arrays, the right meta-data has to be maintained. Since each range of locations can now be
spread in different locations of the disk, I/Os should be scheduled accordingly while also utilizing pre-fetching.
Specifically, given a vector with locations [0, n], this range can be non-uniformly partitioned in ​segments of
non-equal size, which nevertheless are mapped into ​compressed chunks of equal size. Each segment can be
compressed using one or more compressed segments, which are connected to each-other through pointers.
[Experiments and Applications] ​In this project we will wrap this STL vector in a ​column store [6]
implementation (e.g., Apache Cassandra/HBase, MonetDB), and use it to provide, ​put, get, range search ​and
sort ​operations. We will study the performance of the above methods, and provide optimizations to render
them efficient on compressed data. Such optimizations might include ​zone-map indexes ​(uncompressed
synopses for each compressed segment that allow us to skip segments that do not contain our answer),
buffering as well as various other techniques that can optimize sorting.
[Methodology] ​In the first part of the project, we will develop a ​compressed_vector<T> ​interface, which will
internally use the STL vector to store compressed chunks in main memory. In the second part, we will extend
this to utilize ​memory maps and make sure that we can operate on larger-than-memory datasets. Finally, in
the last part, we will implement a basic ​column store using this vector and evaluate its performance under
different optimizations.
[Prerequisites]​ Experience with file and data structures, excellent programming skills in C/C++.
[Internship] Apply by emailing Prof. Themis Palpanas your detailed CV (including course marks). Accepting
this project will make you part of diNo (LIPADE, Paris Descartes University), an enthusiastic team working on
real, challenging problems! The internship will last between 3-6 months, and is fully funded.

References
[1] ​https://github.com/vapier/liblzw
[2] ​https://github.com/facebookarchive/beringei
[3] ​https://github.com/google/snappy
[4] ​https://github.com/fhkingma/bitswap
[5] ​https://en.wikipedia.org/wiki/Memory-mapped_file
[6] ​https://en.wikipedia.org/wiki/Column-oriented_DBMS

https://github.com/vapier/liblzw
https://github.com/facebookarchive/beringei
https://github.com/google/snappy
https://github.com/fhkingma/bitswap
https://en.wikipedia.org/wiki/Memory-mapped_file
https://en.wikipedia.org/wiki/Column-oriented_DBMS

