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ABSTRACT
The detection of anomalies in time series has gained ample academic
and industrial attention. However, no comprehensive benchmark
exists to evaluate time-series anomaly detection methods. It is com-
mon to use (i) proprietary or synthetic data, often biased to support
particular claims; or (ii) a limited collection of publicly available
datasets. Consequently, we often observe methods performing ex-
ceptionally well in one dataset but surprisingly poorly in another,
creating an illusion of progress. To address the issues above, we
thoroughly studied over one hundred papers to identify, collect,
process, and systematically format datasets proposed in the past
decades. We summarize our e�ort in TSB-UAD, a new benchmark
to ease the evaluation of univariate time-series anomaly detection
methods. Overall, TSB-UAD contains 13766 time series with la-
beled anomalies spanning di�erent domains with high variability
of anomaly types, ratios, and sizes. TSB-UAD includes 18 previously
proposed datasets containing 1980 time series and we contribute
two collections of datasets. Speci�cally, we generate 958 time series
using a principled methodology for transforming 126 time-series
classi�cation datasets into time series with labeled anomalies. In
addition, we present data transformations with which we introduce
new anomalies, resulting in 10828 time series with varying complex-
ity for anomaly detection. Finally, we evaluate 12 representative
methods demonstrating that TSB-UAD is a robust resource for as-
sessing anomaly detection methods. We make our data and code
available at www.timeseries.org/TSB-UAD. TSB-UAD provides a
valuable, reproducible, and frequently updated resource to establish
a leaderboard of univariate time-series anomaly detection methods.
PVLDB Reference Format:
John Paparrizos, Yuhao Kang, Paul Boniol, Ruey S. Tsay, Themis Palpanas,
and Michael J. Franklin. TSB-UAD: An End-to-End Benchmark Suite for
Univariate Time-Series Anomaly Detection [EA&B - Benchmark]. PVLDB,
15(1): XXX-XXX, 2022. doi:XX.XX/XXX.XX

1 INTRODUCTION
A wide range of technological advances in sensing solutions en-
ables collecting enormous amounts of time-varying measurements
commonly referred to as time series. In particular, analysts estimate
that, shortly, billions of Internet-of-Things (IoT) devices will be re-
sponsible for generating zettabytes (ZB) of time series [39, 46]. This
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rapid growth of cost-e�ective IoT deployments already empowers
diverse data science applications and has revolutionized the retail,
healthcare, manufacturing, transportation, agriculture, utilities, and
automobile industries [71]. Unfortunately, inherent complexities in
the data generation processes combined with imperfections in the
measurement systems often result in abnormal phenomena, which
subsequently appear as anomalies in the time-series datasets.

Despite over six decades of academic and industrial attention in
time-series anomaly detection (AD) [36, 72, 91], only a few e�orts
have focused on establishing standard means of evaluating existing
solutions (notable examples [31, 52, 87, 93, 98, 102]). Unfortunately,
there is currently no consensus on using a single benchmark for
assessing the performance of time-series AD methods. As a result,
we observe two standard practices in the literature for benchmark-
ing AD models by using (i) proprietary and synthetic data; or (ii)
a limited collection of publicly available datasets. However, both
of these practices are often �awed. In the former case, proprietary
or synthetic data may have been collected or generated biasedly
to support particular claims, anomaly types, or methods. In the
latter case, only a small fraction of datasets are publicly available,
some of which su�er from several drawbacks (e.g., trivial anomalies,
unrealistic anomaly density, or mislabeled ground truth [98]).

In addition, the ambiguity and the startlingly di�erent interpre-
tation of anomalies across applications further hinders progress. It
is not uncommon for methods to achieve high accuracy for some
datasets but surprisingly low accuracy for others. The lack of an
established benchmark creates the illusion of progress while the
identi�cation of robust approaches becomes unlikely. Notably, the
recent advances in deep learning technologies have sparked a surge
of interest in applying neural network architectures for time-series
tasks [32, 33, 35, 76], including for AD [18, 24, 54, 65, 80]. This sud-
den enthusiasm and a slew of proposed methods in the preceding
years underscore the vital need for a time-series AD benchmark.

To address the aforementioned issues and provide an objective
means of quantifying the performance of univariate time-series AD
methods, we introduce TSB-UAD, an open end-to-end benchmark
suite. TSB-UAD serves two purposes. First, to relieve the community
from the laborious tasks of identifying, collecting, processing, and
formatting relevant datasets that are periodically becoming avail-
able. Second, to ease the experimentation through an end-to-end
suite for handling pre-processing and post-processing steps, such as
data loading, processing, augmentation, transformation, and model
evaluation. TSB-UAD performs a rigorous statistical analysis of the
results to establish a leaderboard of robust time-series AD methods.

TSB-UAD is the summary of a long process of thoroughly study-
ing over one hundred papers that appeared in the literature in the



Figure 1: Representative examples of a sample of the public, highly diverse, datasets included in TSB-UAD. The ground truth anomalies are
annotated with red color. The datasets have high variability in sizes as well as anomaly types, densities, and lengths.

past decades (an extensive collection of the works we considered
appear in several recent surveys [11, 19, 44]). Overall, TSB-UAD
contains 13766 univariate time series with labeled anomalies from
a diverse set of domains and real-world applications that vary sig-
ni�cantly in terms of anomaly types, ratios, and sizes. TSB-UAD
consists of three dataset categories. The public category contains
18 previously proposed datasets with 1980 time series. Figure 1
presents representative examples of a sample of the datasets along
with their marked anomalies. Motivated by certain �aws in datasets
and evaluation strategies (details in Section 3), we study anomaly
types and data transformations to contribute two new collections
of datasets. Speci�cally, the arti�cial category includes 126 datasets
with 958 time series. We generate these time series with a principled
methodology for transforming time-series classi�cation datasets
into time series with labeled anomalies. This methodology relies
on a parameter-free classi�er to compute the a�nity (confusion)
matrix among class label, which enables splitting the labels into
normal and abnormal. Then, it concatenates sampled time series
from these classes to form long time series with a controlled number
of anomalies. Despite the arti�cial generation process, over 90% of
these time series correspond to real-world classi�cation time-series
data. Finally, considering e�orts for developing synthetic time se-
ries [31, 52], we study a set of global, local, and subsequence data
transformations and produce 92 datasets, using the public datasets,
with 10828 synthetic time series. Through these transformations, we
introduce new outliers with varying di�culty for AD. Importantly,
we also study factors that a�ect the identi�cation of anomalies and
propose a set of measures to assess the dataset di�culty.

We believe that TSB-UAD provides an objective means of quan-
tifying the performance of time-series AD methods. The embodied
underlying datasets collectively capture signi�cant previous e�orts
of the past decades, diverse methodologies, and large variability
in the characteristics of the anomalies. To state that di�erently,
we can have higher con�dence that solutions in the �rst ranks of
TSB-UAD are robust and could likely lead to good performance
when applied in a new context. To ease experimentation and en-
sure reproducibility of our results, we make our data and code
available at www.timeseries.org/TSB-UAD. Over time, and with
input from the community, we plan to frequently update TSB-UAD
datasets and evaluated methods to establish a trusted leaderboard
of state-of-the-art time-series AD techniques.

Along with the benchmark suite, we also present an experimen-
tal evaluation of 12 representative state-of-the-art AD methods.
Our goal is to provide an initial set of recent, strong baselines and
illustrate that TSB-UAD is a reliable and robust resource for evalu-
ating time-series AD methods. Our �ndings corroborate our claim
and demonstrate the di�culty of methods to consistently perform
well across such a diverse set of time series and anomaly types.
TSB-UAD’s rigorous statistical methodology enables analysis over

di�erent levels of granularity (i.e., aggregated analysis per dataset or
�ne-grained analysis per time series) and across di�erent types and
densities of anomalies, which reveals new insights about the perfor-
mance of ADmethods. For example, modern deep learning methods
perform exceptionally well for point-based anomalies but poorly for
subsequence-based anomalies. In other cases, surprisingly simple
methods outperform complex solutions. By introducing new anom-
alies and by varying parameters of data transformations, TSB-UAD
can assess the robustness of methods under di�erent scenarios and
varying di�culty, revealing cases where the performance of meth-
ods can substantially alter. Our results demonstrate the usefulness
of TSB-UAD for evaluating methods for time-series AD.

We start with a discussion of the related work for time-series AD
(Section 2) and we review several disparities in the benchmarking
of AD methods (Section 3). Then, we present our contributions:
• We review over one hundred papers in the literature to identify,
collect, process, and bring in a uni�ed format 18 previously
proposed datasets for univariate time-series AD (Section 4.1).

• We describe a principled methodology for generating labeled
AD datasets from time-series classi�cation datasets in order to
leverage decades of e�ort in that area (Section 4.2).

• We study data transformations to assist in the augmentation of
datasets with new, more complex anomalies (Section 4.3).

• We report the evaluation measures and the rigorous statistical
analysis included in TSB-UAD (Section 4.4).

• We review factors a�ecting the performance of methods and
introduce measures to assess the dataset di�culty for time-
series AD (Section 4.5).

• We present an initial experimental evaluation of recent repre-
sentative methods on TSB-UAD (Sections 5 and 6).

Finally, we conclude with the implications of our work and a dis-
cussion of new directions and challenges (Section 7).

2 RELATEDWORK
Anomaly Detection: The importance of AD in time-series data
was recognized well before the inception of computer science [72].
In 1972, Fox conducted the �rst study to examine anomalous behav-
ior across time and de�ned two types of outliers [36]. In 1988, Tsay
extended these outliers into four types for univariate time series
[91] and subsequently for multivariate time series [93]. Due to the
large variety of applications, domains, and anomaly types, every
year, a vast number of papers appear in the literature proposing
new methods for AD in time series, and it is beyond our scope to
cover extensively here. Next, we will only brie�y summarize popu-
lar categories of methods, and we refer the reader to three recent
survey papers for a detailed coverage of such methods [11, 19, 44].

Discord-based methods focus in the analysis of subsequences for
the purpose of detecting anomalies in time series, mainly by uti-
lizing nearest neighbor distances among subsequences [22, 38, 50,
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56, 59, 83, 101]. Instead of measuring nearest neighbor distances,
proximity-based methods focus on detecting globally normal or iso-
lated behaviors. General-purpose multi-dimensional point outlier
methods have been proposed in this category [20, 57, 60], with
Isolation Forest [57] working particularly well when extended for
subsequences [16]. Recent methods in this category �rst cluster
data to obtain the normal behavior and seem to achieve competitive
performance [13, 14, 17]. To provide ordering information for sub-
sequences, methods may leverage graph representations in which
edges encode the ordering [16]. Alternative methods exist for anom-
aly detection but they are not speci�cally designed for subsequence
AD [10, 51, 73, 86, 90]. Finally, deep learning approaches, e.g., based
on recurrent [64] or convolutional [68] neural networks, have been
proposed for this task. We refer the reader to a recent survey for a
detailed coverage of deep learning methods for AD [24].
Benchmarks: Our community has a long tradition in publishing
benchmarks for evaluating the performance from traditional data-
base systems [42, 69], big data systems [40], key-value stores [26],
stateful services [12], and streaming systems [4], to, more recently,
machine learning and deep learning applications [25, 78]. Similarly,
the machine learning community has also devoted substantial ef-
fort publishing datasets and benchmarks for many applications
[8, 29, 95]. For time series, in particular, there are already several
resources containing datasets useful for time-series forecasting,
classi�cation, and clustering tasks [6, 27, 30, 61–63]. Unfortunately,
despite the evident need for datasets for AD, much less work has
been devoted in that direction. Speci�cally, the majority of pub-
lished work rely either on generators for synthetic data (e.g., [52])
or on limited available dataset (e.g., NAB [3] and Yahoo [53]). Sev-
eral drawbacks in these datasets have resulted in recent criticism
[84, 98]. Finally, regarding evaluation, the traditional Precision and
Recall measures have been extended to consider ranges and enable
adequate evaluation for time-series AD [88]. Existing benchmarks,
such as the Exathlon benchmark [48] and the KDD21 competition
[98] focus on explainable anomalies on a single application and a
single anomaly type, respectively. In contrast, TSB-UAD compre-
hensively covers a diverse set of domains, applications, anomaly
types, and data transformations to generate anomalies of increas-
ing di�culty. TSB-UAD aims to ease the evaluation by enabling
integration of new detectors while automating the remaining tasks.

3 BIASES IN TIME-SERIES AD EVALUATIONS
The lack of an established benchmark for time-series AD often leads
to biases in the selection of datasets, parameters, and evaluation
measures. Unfortunately, these biases introduce disparities in the
experimentation of published works. We start by describing the
di�erent time-series anomaly types (Section 3.1). Then, we discuss
three core disparities in existing evaluation strategies after thor-
oughly studying the literature (Sections 3.2, 3.3, and 3.4). Finally,
we overview criticism on certain �aws of the available AD datasets
(Section 3.5), supporting the need to establish a new comprehensive
benchmark. We avoid references as our goal is to raise awareness
of these pervasive issues and not to criticize speci�c works.

3.1 Types of Time-Series Anomalies
There are three types of time-series anomalies: point, contextual,
and collective anomalies. Point anomalies refer to data points that
deviate remarkably from the rest of the data. Figure 2(a) depicts
a synthetic time series with a point anomaly: the value of the
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Figure 2: Synthetic illustration of the three time-series anomaly
types: (a) point; (b) contextual; and (c) collective anomalies. Labels
(a/b/c.1) depict the time series whereas labels (a/b/c.2) correspond to
the distribution of the time series values. Label (b.3) corresponds to
the distribution of the values within the dotted black box in (b.1).

anomaly is outside the expected range of normal values. Contextual
anomalies refer to data points within the expected range of the
distribution (in contrast to point anomalies) but deviate from the
expected data distribution, given a speci�c context (e.g., a window).
Figure 2(b) illustrates a time series with a contextual anomaly: the
anomaly is within the usual range of values (left distribution plot
of Figure 2(b)) but outside the normal range of values for a local
window (right distribution plot of Figure 2(b)). Collective anomalies
refer to sequences of points that do not repeat a typical (previously
observed) pattern. Figure 2(c) depicts a synthetic collective anom-
aly. Figure 1 contains representative examples of all three anomaly
types. The �rst two categories, namely, point and contextual anom-
alies, are referred to as point-based anomalies. whereas, collective
anomalies are referred to as sequence-based anomalies.

3.2 Selection of Datasets
The selection of datasets can signi�cantly in�uence the experimen-
tal outcome. Despite the ubiquitous understanding that there are
di�erent types of time-series anomalies [11, 19, 44], evaluating pro-
posed methods only on a limited set of datasets (often synthetic
or proprietary) with only one such anomaly type is common. We
believe that to have a rational assessment of a technique, a bench-
mark should include all types of datasets and anomalies. This trait is
standard in established benchmarks for di�erent time-series tasks,
such as for classi�cation (UCR archive) [27] or forecasting (M com-
petitions) [61–63]. For example, the UCR archive includes over 100
datasets spanning a diverse set of domains with wide variability
in terms of size, length, number of classes, and class imbalance.
A benchmark with such variability for AD can help understand
trade-o�s between general-purpose or anomaly-speci�c methods.

Excluding datasets from an evaluation poses a substantial bar-
rier to consistently analyzing di�erent algorithms across the three
previously de�ned categories of anomalies. For example, point-
based forecasting methods, which detect anomalies by comparing
predictions to actual data, may perform well in Yahoo (with point
anomalies) and poorly in NAB (with collective anomalies). Thus,
focusing solely on Yahoo, which contains over 300 time series, may
seem as an extensive evaluation, yet, the method’s evaluation is
skewed due to the incompleteness of the benchmark. Newcomer
researchers and practitioners who are in dire need of assessing their
own proposed models (as well as reviewers evaluating a scienti�c
work), may be oblivious of such issue and accept the outcome (e.g.,
it is signi�cant to outperform methods in 300 time series, even
though one-line-of-code baselines may achieve comparable results
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to complex methods [98]). Importantly, justifying the dataset se-
lection based on a particular application or anomaly category is
unrealistic. For example, ECG data may mainly contain collective
anomalies (and not individual points). However, there is no guaran-
tee that in a realistic setting, a user malfunction or an imperfection
in the measurement system cannot generate other anomaly types.

3.3 Selection of Model Parameters
Beyond selecting datasets for covering a diverse set of anomaly
types, similarly signi�cant are the intrinsic characteristics of the
datasets, which a�ect the choice of model parameters during evalu-
ation. Among standard datasets, some contain many anomalies of
varying duration and high anomaly contamination (e.g., the NASA-
SMAP [9]) whereas others (e.g., NAB [3]) limit the anomalies to a
few of speci�c duration. Other datasets (e.g., KDD21 [49]) limit the
anomalies per dataset to one and evaluate models using a single
index instead of the entire length of the anomaly.

Such disparities in the formatting of anomalies and the charac-
teristics of datasets render it challenging to adjust necessary model
parameters. As a simple example, we can consider the variety of
ways inwhich existingmethods report anomalies. Speci�cally, some
methods return a raw anomaly score per point, requiring the oper-
ator to manually establish a threshold value to extract anomalies.
Other methods simplify the process by adapting the threshold to
the score. Similarly, some methods return anomalies with a �xed
length while others of variable length. Therefore, only tuning pa-
rameters relevant to the scoring of anomalies becomes cumbersome.
The parameter selection process becomes chaotic for methods with
many additional parameters (e.g., deep learning approaches). By
analyzing dozens of papers and their code repositories, it was ev-
ident that, in some instances, there was an inadequate tuning of
parameters or cases of over�tting. An open benchmark requiring
evaluations across datasets with established, reproducible results
can eliminate the aforementioned issues.

However, parameter choices may also o�er disproportionate ben-
e�ts to particular methods, as we will see (Section 6). For example,
the KDD21 datasets may contain more than one anomaly, but their
ground truth data focuses on the most “prominent” anomaly. There-
fore, methods, which by design extract a single anomaly, may per-
form well under such a setting but their performance may degrade
in settings with high contamination of anomalies. Similarly, meth-
ods extracting all anomalies but not ranking them appropriately
may get penalized. High variability of characteristics is desirable
to assess both the e�ectiveness and the e�ciency of methods.

3.4 Selection of Evaluation Measures
The choice of measure to quantify the quality of methods may also
signi�cantly bias the experimental outcome. A wide range of mea-
sures has been used to evaluate AD methods. Brie�y, traditional
measures, such as Precision, Recall, and F-score, assess the methods
by assuming each time-series point can be marked as an anomaly
or not (e.g., by a threshold on an anomaly score). Shortcomings of
these measures (i.e., di�culty in evaluating collective anomalies)
motivated the creation of range-based variants [88]. Therefore,
selecting datasets with collective anomalies while using the tradi-
tional measures may result in misleading outcomes. Interestingly,
previously mentioned measures require setting a threshold to mark
points as anomalies or not. The AUC measure, on the other side,
eliminates such a need as its value is independent of a threshold.
Returning to the above example of KDD21, which contains multiple

anomalies but only the top-1 appears in ground truth, the selec-
tion of AUC could avoid partially biases because it avoids setting a
threshold on the anomaly score for extracting a single anomaly.

3.5 Flaws in Limited Available Datasets
Apart from the biases that arise from selecting datasets, parameters,
and evaluation measures, �aws in current datasets may also result
in misleading outcomes. In particular, certain available time-series
AD datasets su�er from several drawbacks, resulting in criticism
[98] for works focusing solely on them for their evaluation.

In summary (see details in [98]), for some datasets, a trivial solu-
tion, de�ned simply as one line of code “baseline” using standard
functions (e.g., mean, std, etc.) and some tuned parameters, may
achieve state-of-the-art performance. In other cases, datasets con-
tain a high density of anomalies tailoring the problem more into
classi�cation. For datasets where most anomalies appear in the end,
they may provide opportunities for biasing predictions towards the
last points. Finally, mislabeling issues, where some anomalies are
marked but others are not, may lead to false positives and negatives.

Despite such valid criticism [98], we believe some of these char-
acteristics are unavoidable and exist to some degree in most estab-
lished benchmarks. For example, the UCR time-series classi�cation
archive [27] contains datasets with class imbalance and small train-
ing sets. Simple baselines achieve almost perfect accuracy in some
UCR datasets. Yet, the UCR archive is one of the most valuable
benchmarks for the time-series community, enabling tremendous
progress in this area in the past two decades.

Notably, several of the dataset �aws are problematic mainly due
to cherry-picking or the disparities in selecting parameters or evalu-
ation measures, as mentioned earlier. For example, a simple method
performing well (without brute-force parameter search) across all
such “trivial” datasets is still valuable. Stating that di�erently, if
a technique performs well on some more challenging datasets, it
would be worrisome to not perform well in such “trivial” datasets.
In addition, high anomaly density or anomalies appearing towards
the end become less relevant if the evaluation focuses on a large
variety of datasets (e.g., a method predicting anomalies in the last
points will no longer succeed across all datasets). Finally, using mea-
sures like AUC during evaluation can eliminate some mislabeling
issues (e.g., for unmarked anomalies, considering that all methods
get confused, all methods will get similarly penalized instead of
having to decide which of the anomalies appear in ground truth).

4 TSB-UAD: BENCHMARK DETAILS
Given the above disparities and the inconsistencies in some datasets,
we studied many papers appearing in the literature in the past two
decades [11, 19, 44] to identify the best practices in time-series AD
benchmarking and collect previously used datasets. We summarize
this lengthy process by introducing TSB-UAD, our end-to-end time-
series AD benchmarking suite. First, we review the categories of
datasets and the library included in TSB-UAD (Section 4.1). Second,
we describe a principled methodology for generating AD datasets
from time-series classi�cation datasets to leverage decades of ef-
forts in that area (Section 4.2). Third, we study global, local, and
subsequence data transformation to assist in the augmentation of
datasets with new, more complex anomalies (Section 4.3). Then, we
report the evaluation measures and the rigorous statistical analysis
included in TSB-UAD (Section 4.4). Finally, we study factors a�ect-
ing the performance of methods and introduce measures to assess
the dataset di�culty for time-series AD (Section 4.5).
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Dataset Count Average
Length

Average #
Anomalies

Average #
Abnormal
Points

Average
Abnormal
Density %

'2

Dodgers [47] 1 50400.0 133.0 5612.0 11.14 2.02
ECG [66] 52 230351.9 195.6 15634.0 6.8 8.33
IOPS [1] 58 102119.2 46.5 2312.3 2.1 3.33

KDD21 [49] 250 77415.06 1 196.5 0.56 10.67
MGAB [89] 10 100000.0 10.0 200.0 0.20 27.64

NAB [3] 58 6301.7 2.0 575.5 8.8 2.67
SensorScope [99] 23 27038.4 11.2 6110.4 22.5 2.38

YAHOO [53] 367 1561.2 5.9 10.7 0.70 3.25
NASA-MSL [9] 27 2730.7 1.33 286.3 11.97 1.97

NASA-SMAP [9] 54 8066.0 1.26 1032.4 12.39 4.18
Daphnet [5] 45 21760.0 7.6 2841.0 9.98 2.38

GHL [34] 126 200001.0 1.2 388.8 0.19 27.24
Genesis [94] 6 16220.0 3.0 50.0 0.31 2.28
MITDB [67] 32 650000.0 210.1 72334.3 11.13 7.19

OPP [79] 465 31616.9 2.0 1267.3 4.09 2.94
Occupancy [23] 10 5725.8 18.3 1414.5 28.81 2.53

SMD [85] 281 25562.3 10.4 900.2 3.54 3.39
SVDB [43] 115 230400.0 208.0 27144.5 11.78 7.14

Table 1: Summary characteristics of the 18 public datasets included
in TSB-UAD. '2 is the relative contrast (discussed in Section 4.5),
a coe�cient measuring the distribution of normal and abnormal
points, with smaller values indicating relatively higher di�culty.

4.1 Datasets and Benchmarking Suite
TSB-UAD consists of three dataset categories, namely, public, ar-
ti�cial, and synthetic datasets. Public datasets contain previously
proposed datasets appearing in the literature across di�erent com-
munities.Arti�cial datasets include mainly real-world datasets (over
90%) used previously for time-series classi�cation and transformed
into AD datasets with labeled anomalies. Synthetic datasets are
augmented versions of the public datasets where various data trans-
formations infuse new anomalies or increase their complexity.
Public Datasets: We identi�ed and collected 18 datasets proposed
in the past decades in the literature containing 1980 time series
with labeled anomalies. Speci�cally, each point in every time series
is labeled as normal or abnormal. Table 1 summarizes relevant
characteristics of the datasets, including their size and length, as
well as statistics about the anomalies. The �rst 8 datasets originally
contained univariate time series, whereas the remaining 10 datasets
originally contained multivariate time series that we converted into
univariate time series. Speci�cally, we run our ADmethods (Section
6) on each dimension separately, and we keep those dimensions
where at least one method achieves �*⇠ > 0.8 (Section 4.4).

Even though some of these datasets are publicly available (e.g.,
in code repositories), we could not identify works performing eval-
uations in a large portion of them. The main reason is the laborious
task of identifying and collecting datasets across di�erent commu-
nities and, subsequently, processing and formatting the datasets
to bring them in a uni�ed format. For some datasets, complicated
documentation describes the collection process and instructions
for extracting anomalies. In other cases, the lack of documentation
hinders the process of utilizing the datasets. We relieve the commu-
nity from this task and provide datasets in a uni�ed format with
the scripts for extracting anomalies from the original data.

Brie�y, TSB-UAD includes the following datasets:
• Dodgers [47] is a loop sensor data for the Glendale on-ramp
for the 101 North freeway in Los Angeles and the anomalies
represent unusual tra�c after a Dodgers game.

• ECG [66] is a standard electrocardiogram dataset and the anom-
alies represent ventricular premature contractions. We split one
long series (MBA_ECG14046) with length ⇠ 1e7) to 47 series
by �rst identifying the periodicity of the signal.

• IOPS [1] is a dataset with performance indicators that re�ect the
scale, quality of web services, and health status of a machine.

• KDD21 [49] is a composite dataset released in a recent SIGKDD
2021 competition with 250 time series.

• MGAB [89] is composed of Mackey-Glass time series with non-
trivial anomalies. Mackey-Glass time series exhibit chaotic be-
havior that is di�cult for the human eye to distinguish.

• NAB [3] is composed of labeled real-world and arti�cial time
series including AWS server metrics, online advertisement click-
ing rates, real time tra�c data, and a collection of Twitter men-
tions of large publicly-traded companies.

• NASA-SMAP and NASA-MSL [9] are two real spacecraft teleme-
try data with anomalies from Soil Moisture Active Passive
(SMAP) satellite and Curiosity Rover on Mars (MSL). We only
keep the �rst data dimension that presents the continuous data,
and we omit the remaining dimensions with binary data.

• SensorScope [99] is a collection of environmental data, such
as temperature, humidity, and solar radiation, collected from a
typical tiered sensor measurement system.

• Yahoo [53] is a dataset published by Yahoo labs consisting of
real and synthetic time series based on the real production
tra�c to some of the Yahoo production systems.

• Daphnet [5] contains the annotated readings of 3 acceleration
sensors at the hip and leg of Parkinson’s disease patients that
experience freezing of gait (FoG) during walking tasks.

• GHL [34] is a Gasoil Heating Loop Dataset and contains the sta-
tus of 3 reservoirs such as the temperature and level. Anomalies
indicate changes in max temperature or pump frequency.

• Genesis [94] is a portable pick-and-place demonstrator which
uses an air tank to supply all the gripping and storage units.

• MITDB [67] contains 48 half-hour excerpts of two-channel
ambulatory ECG recordings, obtained from 47 subjects studied
by the BIH Arrhythmia Laboratory between 1975 and 1979.

• OPPORTUNITY [79] (OPP) is a dataset devised to benchmark
human activity recognition algorithms (e.g., classi�cation, auto-
matic data segmentation, sensor fusion, and feature extraction).
The dataset comprises the readings of motion sensors recorded
while users executed typical daily activities.

• Occupancy [23] contains experimental data used for binary
classi�cation (room occupancy) from temperature, humidity,
light, and CO2. Ground-truth occupancy was obtained from
time stamped pictures that were taken every minute.

• SMD [85] (Server Machine Dataset) is a 5-week-long dataset
collected from a large Internet company. This dataset contains
3 groups of entities from 28 di�erent machines.

• SVDB [43] includes 78 half-hour ECG recordings chosen to
supplement the examples of supraventricular arrhythmias in
the MIT-BIH Arrhythmia Database.

Arti�cial Datasets: To leverage existing real-world datasets used
for alternative time-series tasks, we followed established work for
systematic construction of AD datasets from generic classi�cation
datasets [31]. We propose a version suitable for time series that
splits class labels into normal and abnormal (see Section 4.2). This
process enables the generation of 958 time series, belonging to 126
datasets corresponding to datasets of the UCR Archive [27]. De-
spite this arti�cial generation process, these time series correspond
mainly to real-world datasets and applications (over 90%).
Synthetic Datasets: Considering signi�cant e�orts for develop-
ing synthetic time series for AD [52], we study and present a set
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Figure 3: Arti�cial AD dataset generation process from a time-series
classi�cation dataset (Symbols from [27]). In the left panel, the solid
lines indicate the MST based on the a�nity matrix among all labels.
The neighboring nodes belong to two di�erent colors, red (blue) la-
bel is abnormal (normal). Square labels are selected to generate the
time series. In the right panel, we present two sample time series.

of global, local, and subsequence data transformations with the
purpose to infuse new anomalies or increase the complexity of
identifying existing anomalies (see Section 4.3). We apply these
transformations in the public datasets to produce 92 augmented
datasets, with 10828 time series. Importantly, we provide the cor-
responding scripts to assist in the creation of exponentially large
datasets with varying di�culty to evaluate time-series AD methods.
TSB-UAD Benchmarking Suite: The aim of the accompanied
Python library is to hide all the complexity of benchmarking AD
methods by handling pre-processing and post-processing steps (that
we discuss in next sections), such as data loading, processing, gener-
ation, and transformation, model evaluation, and rigorous statistical
analysis. Researchers and practitioners should mainly focus their
attention on implementing detectors, the methods for extracting
anomalies. In our repository, we provide 12 examples of super-
vised and unsupervised detectors that we use in our evaluation. We
also release all the datasets across all categories for reproducibility
purposes and for utilization outside of the accompanied library.

4.2 Transforming Time-Series Classi�cation
Datasets into Labeled AD Datasets

A principled methodology is necessary to leverage existing time-
series classi�cation datasets by transforming the class labels as-
signed to each time series into normal and abnormal. This is of great
importance considering decades of e�ort behind the creation of
such classi�cation datasets. If we can achieve a distinction between
normal and abnormal classes, we can then produce time-series
AD datasets by sampling (and concatenating) time series from the
normal classes while controlling the anomaly density during the
infusion of time series sampled from the abnormal classes.

A key challenge is to avoid the creation of time series with
trivial or impossible to detect anomalies. To achieve this goal, we
proceed in two steps (following the high-level framework in [31]):
(1) we identify pairs of classes with the high confusion, given by
an oracle classi�er; and (2) for selected class pairs, we generate
time series but retain only cases where at least one detector can
identify the anomalies. By using di�erent thresholds to assess the
detection accuracy (see Section 4.4), we can generate datasets of
varying di�culty. For TSB-UAD, we construct the dissimilarity
matrix among each pair of time series using the SBD distance [74].
SBD is a fast, accurate, and parameter-free distance measure that

Dataset Count Average
Length

Average #
Anomalies

Average #
Abnormal
Points

Average
Abnormal
Density %

'2

Earthquakes 8 58624 2 1024 1.84 1.67
Semg...Ch2 2 76750 2 1000 1.46 2.90

ElectricDevices 6 9984 2 192 1.92 4.10
UWave...Z 2 32445 2 630 1.94 5.51

Worms 8 91800 2 1800 1.96 5.89
Distal...Correct 2 8160 2 160 1.96 6.37
AllGesture...Z 5 51000 2 1000 1.96 6.72
AllGesture...X 8 57625 2 1000 1.82 9.38

ECG5000 7 16280 2 280 1.82 10.95
EOG...Signal 8 57250 2 1000 1.84 13.47

Table 2: Summary characteristics of 10 datasets (out of 126) in arti�-
cial category of TSB-UAD.'2 is the relative contrast (see Section 4.5),
a coe�cient measuring the distribution of normal and abnormal
points, with smaller values indicating relatively higher di�culty.

has achieved state-of-the-art performance [75] and is suitable to
incorporate the temporal structure of time series. Then we apply a
1-NN (Nearest Neighbor) classi�er, using the pre-computed distance
matrix, and predict the label of each sequence. Even though more
accurate classi�ers exist [7], we favor a deterministic and parameter-
free classi�er to ensure reproducible results.

The probability that a series G with label ~ = 9 is predicted to
be label ~̂ = : , % (~̂ = : |G), is de�ned as the confusion factor 2 9:
from label 9 to label : . The normalized a�nity between label 9
and : is (2 9: + 2: 9 )/2. We construct the a�nity matrix between
all< labels and compute the maximum spanning tree (MST) based
on this matrix. Alternatively, someone might consider picking as
normal and abnormal classes from the single pair of classes with the
maximum confusion. Unfortunately, this will result in cases very
di�cult to distinguish. Instead, the MST step helps to construct sets
that have the largest overall a�nity. Finally, we two-color the adja-
cent nodes in the MST and assign one color as normal and the other
as abnormal. Two parameters are necessary to generate data: the
number of abnormal segments  and the anomalous subsequence
ratio A . The number of normal segments is # =  /A �  . Suppose
the abnormal set contains < labels with = data. We pick  data
without replacement from = data. If = <  , then we pick all = data.
We count the frequency 50 of the most frequent anomalous label,
then the frequency of each normal label 5= = 2050 . The number of
selected normal labels is ! = # /5= . We pick L normal labels, and
each normal label is selected 5= times with replacement. Finally,
 anomalous segments and # normal segments are shu�ed and
concatenated to form one synthetic time series.

We use this process on each of the 128 datasets in the UCR archive
to generate one or more time series per dataset. We only keep time
series for which at least one of �ve unsupervised methods that per-
formed well in the public datasets achieved AUC higher than 0.65.
This process excluded completely two datasets and several gener-
ated time series from each dataset, resulting in 126 datasets with
958 time series. Figure 3 presents the MST and the corresponding
time series generated along with the infused anomalies (in red) for
the Symbols dataset. Table 2, summarizes relevant characteristics
of 10 representative datasets in the arti�cial category of TSB-UAD.

4.3 Data Transformations for Synthetic Dataset
Generation of Increasing Di�culty

To emulate additional anomalies or increase the complexity for AD,
we study a set of global, local, and subsequence transformations.
Global transformations change characteristics of the entire time
series, while the local and subsequence transformations modify
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contiguous portions of the time series. We denote the original time
series as - = (G0, G1, ..., G=) with standard deviation B .

4.3.1 Global Transformations: We consider �ve global transfor-
mations to alter time series using random walk background, white
noise, point outliers, smoothing, and smoothing of segments. Specif-
ically, we de�ne ?AF as the strength of a random walk background.
Let us assume an independent random variable /8 , 8 2 [1,=] from
[-1,0,1] and set 10 = 0 and 1= =

Õ=
8=1 /8 . We transform the original

time series as follows: G 08 = G8+?AF ·B ·18 . Similarly, we de�ne ?F= as
the strength ofwhite noise and18 ⇠ N(0, 1), 8 2 [0,=].We transform
the original time series as follows: G 08 = G8+?F= ·B ·18 . The integrated
backgrounds do not alter the label of each point, however, they
increase the AD di�culty for certain methods. For point outliers, we
de�ne the outlier ratio ?>A and randomly pick= ·?>A points from the
time series. The selected data point is altered as follows: G 08 = G8 +5B .
Another version replaces the selected data with the maximum value
of the original time series: G 08 =<0G (- ). Thus, point outliers may
introduce global or contextual anomalies. For smoothing, 5 is a
Gaussian �lter with line width ?B< . The smoothed time series is
the convolution between original time series - and �lter 5 , which
can be calculated through the product of their Fourier transforms,
- 0 = - ⇤ 5 = F �1 (F (- )F (5 )). Finally, we can extend this idea to
multiple segments by altering two segments with di�erent smoothing
windows. We apply two Gaussian �lters with di�erent line widths
?1, ?2 to the �rst and second half of the time series, respectively,
and concatenating them together - 0 = [-0:=/2 ⇤ 5?1 ,-=/2:=+1 ⇤ 5?2 ].
4.3.2 Local Transformations: We consider two local transforma-
tions designed to emulate collective anomalies. Pattern-related trans-
formations insert a plateau region; �ip a segment horizontally; re-
scale or shift a segment with coe�cient U ; normalize a segment
with I-score, MinMax, MedianNorm, MeanNorm, Logistic, and
Tanh [75]; or add white noise to one segment. Frequency-related
transformations re-sample a segment with a new frequency. Similar
to the point outlier ratio, we can also de�ne the transformed-period
ratio and apply these local transformations to all selected periods.
Figure 4 shows the e�ect of several of the global and local data
transformations when applied to a sample time series.

4.3.3 Subsequence Transformations: The third type of transfor-
mation is limited to the synthetic datasets. Given that we set the
normal and abnormal sequences, we can control the anomalous
subsequence ratio, the a�nity level among anomalous data, and the
a�nity level among anomalous and normal data. For instance, Fig-
ure 3 displays two synthetic time series based on the same dataset.
When we pick label 1 as the anomalous data and label 0 as the
normal data (upper panel), the two anomalous subsequences are
similar since they belong to the same label. The normal and anoma-
lous subsequences are also similar. When we pick labels 1 and 5 as
the anomalous data and label 4 as the normal data (lower panel),
then the distance between two anomalous subsequences and the
distance between anomalous and normal subsequences are both evi-
dent. To generate examples, we follow the method discussed earlier
to �rst color (mark) the classes and we randomly select classes from
di�erent colors. The ensembled data will contain various levels of
a�nity and spurious anomalies (�ltered by black-box AD methods).

We note that the initial transformations in TSB-UAD capture
a part of the overall spectrum of options. We plan to incorporate
more advanced transformations, such as Markov Switching models
or varying-parameter models [77, 92], in the near future.

(a) Global transformations. Left: original data (top), random walk back-
ground (middle), add point outliers (bottom). Right: smoothing (top), ap-
ply two smoothing windows (middle), add white noise (bottom).

(b) Local transformations. Left: insert a �at region (top), re-scale one period
(middle), add white noise to a period (bottom). Right: �ip one period horizon-
tally (top), tanh normalization (middle), over sampling (bottom).

Figure 4: Illustrations of global and local data transformations.

4.4 Evaluation Measures and Tests for AD
Several measures have been proposed to quantify the quality of AD
methods. Next, we review these measures and present some of their
shortcomings. TSB-UAD includes all measures for completeness.
Precision, Recall, and F-score: Let P and N be the number of
actual positive and negative points, TP, FP, TN, FN be the number
of true positive, false positive, true negative, and false negative
classi�cations. Then we de�ne %A428B8>= = )%/()% + �%), True
positive rate (Recall) )%' = )%/% = )%/()% + �# ), and False
positive rate �%' = �%/# = �%/(�% + )# ). Subsequencely, F-
score is the harmonic mean of the precision and recall: � � B2>A4 =
2 ·%A428B8>= ·'420;;/(%A428B8>=+'420;;) . These measures are most
commonly used to evaluate AD methods in the literature.
AUC: Precision, Recall, and F-score depend on the need to select a
threshold on the anomaly score to determine normal and abnormal
points (such that the TP, FP, TN, FN quantities can be computed). A
comprehensive evaluation is to vary the threshold from the highest
to the lowest possible value, given a computed anomaly score from
an AD method. To achieve that, we use the receiver operating
characteristics curve (ROC) to record the relationship between the
TPR and FPR during this process. The area under the curve (AUC)
is an appropriate measure to compare AD method. AUC ignores
the precision and, therefore, AUC may be over-optimistic for an
unbalanced sample. For such cases, F-score is a good supplement
or a Precision-Recall curve (both included in TSB-UAD).
Range-Precision andRange-Recall [88]: To alleviate shortcom-
ings of the traditional Precision and Recall measures, their de�ni-
tions were extended recently to capture ranges. Speci�cally, their
de�nition considers several factors: the ratio of the number of de-
tected anomaly subsequences to the total number of the anomaly
subsequences, the ratio of the number of the detected point outliers
to the total number of the point outliers, the relative position of
the true positive portion in each anomaly subsequence, the number
of the fragmented prediction regions that correspond to one real
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anomaly subsequence. As before, the Range-F-score is the harmonic
mean of the Range-Precision and the Range-Recall.
Precision@k: Finally, given the number of abnormal points : , an
alternative measure expects the points with the : most signi�cant
anomaly scores as anomalies. By denoting the corresponding TP as
TP@k, then Precision@k = TP@k / k.

As noted earlier, TSB-UAD reports all measures to provide a
complete picture of each method. In our experiments, we evaluate
the sensitivity of all measures to several factors (Section 6.1) and
we use AUC due its robustness to noise and the normal/abnormal
ratio. Importantly, AUC also avoids the dependency of all other
measures in setting threshold parameters on the anomaly scores.
Statistical Analysis: Considering that we perform evaluations
across di�erent datasets, appropriate statistical tests are necessary
to assess the signi�cance of the di�erences in accuracy. For TSB-
UAD, we employ two non-parametric statistical tests: one to vali-
date pairwise comparisons and one to validate multiple methods
together. Speci�cally, following [28], we use the Wilcoxon test [96]
to evaluate pairs of methods over multiple datasets. To reason about
multiple methods over multiple datasets we use the Friedman test
[37] followed by the post-hoc Nemenyi test [70].

4.5 Assessing Di�culty of the AD Datasets
In addition to evaluating methods, we also consider factors for
assessing the di�culty of the time series for AD. To illustrate this
point, Figure 5 presents synthetic time series divided into two blocks.
The �rst block contains: Figure 5(a) depicts a time series with only
one anomaly, Figure 5(b.1) illustrates a time series with two di�erent
anomalies, and Figure 5(b.2) depicts a time series with two similar
(in shape) anomalies. The second block contains: Figure 5(c) depicts
a time series with single normality and Figure 5(d) shows a time
series with two di�erent normalities. Based on those two cases, we
summarize several factors a�ecting the detection of anomalies: (1)
the variation of normal subsequence: a time series with a single
or multiple normal patterns (see Figure 5(c) versus (d)); (2) the
variation of anomalies: a time series with a single type of anomaly
or multiple di�erent anomalies (see Figure 5(a) versus (b.1)); and
(3) the cardinality of anomalies: the time series contain unique or
multiple similar anomalies (see Figure 5(b.1) versus (b.2)).

As we will see, di�erent combinations of these factors may result
in di�erent appropriate methods for AD. Several coe�cients have
been previously discussed to capture the distribution of normal and
abnormal points [31, 45]. We generalize these de�nitions for time
series and propose a measure suitable for the synthetic datasets.
Relative Contrast (RC) [45]: RC is de�ned as the ratio of the
expectation of the mean distance to the expectation of nearest
neighbor distance for all data points. Denote SBD distance between
two series B8 and B 9 as ⇡ (B8 , B 9 ) and the whole set is ( . For each
series G , its 1-NN distance ⇡<8= (G) = minB2(�G ⇡ (G, B) and mean
distance ⇡<40= (G) = EB2(�G ⇡ (G, B). The relative contrast:

'2 =
EB2( [⇡<40= (B)]
EB2( [⇡<8= (B)]

.

To calculate RC, we �rst split the time series by its period, and
the distance matrix is built based on the SBD distance among each
pair of subsequences. RC measures the separability of the nearest
neighbor of a point from the other points. If RC is closer to 1,
the mean distance is close to the nearest-neighbor distance, which
indicates the data distributes uniformly, and the clustering is harder.
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Figure 5: Synthetic illustration of six time series containing: (a) one
single anomaly; (b.1) two distinct anomalies; (b.2) two similar anom-
alies; (c) one single normality; and (d.1/2) two di�erent normalities.

Normalized clusteredness of abnormal points (NC) [31]: NC
is the ratio of the average SBD of normal subsequences to the
average SBD of abnormal subsequences. Denote the set of normal
sequences (=>A and the set of anomalous sequence (0=> , then

#2 =
EB8 ,B 9 2(=>A ,8<9 [⇡ (B8 , B 9 )]
EB8 ,B 9 2(0=> ,8<9 [⇡ (B8 , B 9 )]

A larger NC indicates the abnormal points are closer to each other
and increases the di�culty of anomaly detection.
Normalized adjacency of normal/abnormal cluster (NA) :NA
is a measure that we propose and is de�ned as the ratio of the
minimum distance between the centroids of normal and abnormal
clusters to the average distance among the centroids of all normal
clusters. Denote the set of centroids of normal clusters ⇠=>A and
the set of centroids of anomalous clusters ⇠0=> , then

#0 =
min28 2⇠0=> ,2 9 2⇠=>A ⇡ (28 , 2 9 )
E28 ,2 9 2⇠=>A ,8<9 [⇡ (28 , 2 9 )]

If the system only has one normal cluster, NA is null. A larger NA
indicates abnormal points are more distant from the normal points.

RC is a general description of the clusteredness of the whole
dataset, and NC is the clusteredness contrast between normal and
anomalous data points. NC and NA require knowledge of the actual
normal and abnormal subsequences and their clustering, so they
can only be calculated on our synthetic datasets.

5 EXPERIMENTAL SETTINGS
In this section, we review the settings of the initial evaluation of 12
representative AD methods in TSB-UAD. The goal of this evalua-
tion is not to be exhaustive as such e�ort alone would require the
consideration of at least one hundred methods [11, 19, 44]. Instead,
we focus on recent methods that are representative of the main
AD categories (see Section 2) and have reported state-of-the-art
performance in some of the datasets we have included in TSB-UAD.
Variants of the included methods or more sophisticated tuning and
pre-processing steps for each method may lead to improved per-
formance. We aim to show that TSB-UAD is a reliable and robust
resource and we leave such exhaustive evaluation for future work.
Datasets: Weuse all 13766 time series included in TSB-UAD. Specif-
ically, 1980 time series across the 18 public datasets, 958 time series
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across the 126 arti�cial datasets, and 10828 time series across 92
synthetic datasets. All time series points are annotated as normal
or abnormal points to enable computation of evaluation measures.
Platform: We ran our experiments on a server with the the follow-
ing con�guration: Dual Intel(R) Xeon(R) Silver 4116 (12-core with
2-way SMT), 2.10 GHz, 196GB RAM. The server has an NVIDIA
Quadro P6000 GPU and ran Ubuntu Linux 18.04.3 LTS (64-bit).
Implementation: We implemented the library and scripts that
accompany TSB-UAD in Python 3.8 with the main following depen-
dencies: sklearn 0.23.0, tensor�ow 2.3.0, pandas 1.2.5, and networkx
2.6.3. For repeatability purposes and to ease experimentation we
make datasets and code available: www.timeseries.org/TSB-UAD.
Algorithms: For the initial evaluation we consider the following
strong baselines. Isolation Forest (IForest) [58] constructs the bi-
nary tree based on the space splitting and the nodes with shorter
path lengths to the root are more likely to be anomalies. The Local
Outlier Factor (LOF) [21] computes the ratio of the neighboring
density to the local density. The Histogram-based Outlier Score
(HBOS) [41] constructs a histogram for the data and the inverse of
the height of the bin is used as the outlier score of the data point.
Matrix Pro�le (MP) [100] calculates as anomaly the subsequence
with the most signi�cant 1-NN distance. NORMA [15] identi�es
the normal pattern based on clustering and calculates each point’s
e�ective distance to the normal pattern. Principal Component Anal-
ysis (PCA) [2] projects data to a lower-dimensional hyperplane,
and data points with a signi�cant distance from this plane can be
identi�ed as outliers. Autoencoder (AE) [81] projects data to the
lower-dimensional latent space and reconstructs the data, and out-
liers are expected to have more evident reconstruction deviation.
LSTM-AD [65], Polynomial Approximation (POLY) [55], and CNN
[68] build a non-linear relationship between current and previous
time series, and the outliers are detected by the deviation between
the predicted and actual values. One-class Support Vector Machines
(OCSVM) [82] �ts the dataset to �nd the normal data’s boundary.
Parameter Settings: For Isolation Forest we consider two vari-
ants: IForest1 indicates the IForest model without a sliding window,
which is suited to the global point outliers, whereas IForest consid-
ers the sliding window variant. LSTM-AD, AE, CNN, and OCSVM
are semi-supervised algorithms that require anomaly-free training
data. In our test, only KDD21, NASA-SMAP, and NASA-MSL con-
tain anomaly-free training data. For the other datasets, we train
the models on the initial regions of the time series. Speci�cally, the
training ratio for YAHOO is 30% and for the remaining datasets
is 10%. We expect a low-density anomalies (< 5%) in the train-
ing dataset would not a�ect the result. However, we note that for
some datasets with higher contamination ratios the results for the
semi-supervised algorithms could likely further improved. We also
highlight that several of themethods into consideration requiremin-
imal tuning and the default values reported in the corresponding
papers or codes we rely on work well across datasets. For IFor-
est/IForest1, we use the default 100 base estimators in the tree
ensemble. For LOF, we follow the default setting in this model and
we use 20 as the number of neighbors. For MP we set the window
as the period of the time series, estimated using the autocorrela-
tion function. We use the same period estimation for all methods
requiring to set a a sliding window. For NORMA, we follow the
default parameter settings in the paper. Similarly to MP, the pattern
length is estimated with the autocorrelation function. We set the
normal model of length to be 3*pattern length and sample 40% of

the data without overlapping. For PCA, we use 10 principal com-
ponents. For POLY, the best model is selected from the following
settings. The power of polynomial �tted to the data is 0 or 3. The
length of the window to be predicted is 20 or the period of the
series. For OCSVM, we set the upper bound on the fraction of
training errors to be 0.05. For LSTM-AD, we use the following pa-
rameters: two LSTM layers with units=50, then a Dense layer with
units=1. loss=’mse’, optimizer=’adam’, validation split ratio=0.15,
batch size=64, epochs = 50, patience = 5. For AE, the best model is
selected from threeMLP-based Autoencoders with the architectures
given by (32,16,8,16,32), (32,8,32), (32,16,32). Activation function is
ReLU. Each number indicates the units for the corresponding Dense
layer. Then one Dense layer with units = the length of the input,
validation split ratio=0.15, batch size=64, epochs=100, patience=5,
optimizer=’adam’, loss=’mse’. Finally, for CNN, we use three Con-
volutional Blocks (�lters=8,16,32, kernel size=2, strides=1) with
Max Pooling (pool size=2) and ReLU. Then one Dense layer with
units=64, then one Dropout layer with rate=0.2, then one dense
layer with units=1. loss=’mse’, optimizer=’adam’, validation split
ratio=0.15, batch size=64, epochs = 100, patience = 5.

6 EXPERIMENTAL RESULTS
We �rst evaluate the robustness of the di�erent accuracy measures
(Section 6.1). Then, we compare the 12 methods in the 18 public
datasets that are part of the TSB-UAD (Section 6.2 and Section 6.3).
Along with the accuracy results we also present a runtime evalua-
tion. For several of the methods with good performance, especially
those without the need of supervision, we continue the evaluation
in the arti�cial and the synthetic datasets. In Section 6.4, we con-
cretely build the relation between the strength of transformation to
the performance of algorithms based on the 92 synthetic datasets.
Finally, in Section 6.5, we use NC, NA, and RC to quantify the di�-
culty of the arti�cial datasets and observe the correlation between
these coe�cients and the performance of the algorithms.

6.1 Evaluation of AD Accuracy Measures
We start by evaluating the di�erent accuracy measures (Section 4.4)
based on their sensitivity to the following factors: (i) noise on the
anomaly score; (ii) lag on the anomaly score; and (iii) normal vs.
abnormal ratio in the time series labels. The �rst two factors can be
injected on the AD methods anomaly score due to manufacturing
issues, external causes, or the AD method design. For instance, LOF
and Isolation Forest, that both consider subsequences of a given
length ✓ , might produce an anomaly score with a lag of ✓ with the
labels. Thus, a strong accuracy evaluation measure requires to be
as less in�uenced as possible to the previously enumerated factors.

For each AD method, we �rst compute the anomaly score () on
a given time series. We then inject either lag ; or noise =, or change
the normal versus abnormal ratio A . For 10 di�erent randomly
selected values of ; 2 [�0.25 ⇤ ✓, 0.25 ⇤ ✓], = 2 [�0.05 ⇤ (<0G (() ) �
<8=(() )), 0.05 ⇤ (<0G (() ) � <8=(() ))] and A 2 [0.01, 0.2], we
compute the 9 di�erent evaluation measures. For each evaluation
measure, we compute the standard deviation of the ten di�erent
values.We then compute the average standard deviation over all AD
method. We thus obtain three values (average standard deviation
when we vary the lag, noise, and normal versus abnormal ratio) for
each accuracy measure and each time series in the benchmark. We
�nally compute box plots for lag (Figure 6(a)), for noise (Figure 6(b)),
and for the normal/abnormal ratio (Figure 6(c)).

9
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Figure 6: Over the entire benchmark, box plots illustrate the stan-
dard deviation of the accuracy measures when we vary (a) lag; (b)
noise; and (d) normal/abnormal ratio.

Our analysis con�rms that AUC-ROC, F, and Range-F score (RF)
are the most robust measures when we vary the noise and the
normal versus abnormal ratio. Overall, AUC-ROC is more robust
than F and RF for the noise and the normal/abnormal ratio, whereas
F and RF are less sensitive to lag. Based on this experiment, we
focus on AUC-ROC that, in contrast to F and RF, does not require
the need to set a threshold on the anomaly scores. Nonetheless,
TSB-UAD computes all accuracy measures.

6.2 Benchmark Accuracy Evaluation
We �rst test 12models on the 18 public datasets. Table 3 presents the
average AUC-ROC (AUC), F, and RF scores across all datasets and
methods. Note that, due to threshold selection (for fairness we used
the same threshold, )⌘, on the anomaly score () , )⌘ = ` (() ) + 3 ⇤
f (() ), for all methods), F and RF values are 0 in a few cases, which
veri�es our choice of AUC for our analysis. Figure 7(a) depicts a
boxplot per method corresponding to the AUC-ROC values over
the entire benchmark. From this initial inspection, two methods
seem to perform well: NORMA and MP.

To better understand the ranking of the methods, we use the
Friedman test followed by Wilcoxon signed-rank test [97] in two
levels of granularity: (i) �ne-grained analysis that considers each
time series separately; and (ii) aggregated analysis at the dataset
level (using the average AUC-ROC of the time series in each dataset).
Di�erent levels of granularity provide better understanding and
insights for the performance of the AD methods. From the �ne-
grained analysis we observe that NORMA and MP outperform the
rest of the methods signi�cantly (Figure 7(a.1)). However, the ag-
gregated analysis shows that none of the methods are signi�cantly
better than the others (Figure 7(a.2)) and, importantly, MP is no
longer among the highest ranked methods. We argue that both anal-
yses are important. In the �rst case, we take into consideration 1980
di�erent scenarios and cases with anomalies, which provides evi-
dence for the statistical test to detect signi�cant di�erences among
AD methods. However, due to the imbalance of time series per
dataset, methods that happen to work well on particular types of
time series and anomalies that appear in the larger datasets might
bene�t from this analysis. The aggregated analysis provides a di�er-
ent angle, which may con�rm or dispute the previous �ndings. We
observe, that NORMA performs well in both analyses, ranked �rst
in the �ne-grained analysis and second in the aggragated analysis.
POLY, AE, and IForest seem to also perform well in both scenarios.

We continue our analysis by comparing methods for two distinct
sections of the benchmark: time series that contain point-based
anomalies only (Figure 7(b)) and sequence-based anomalies only

(b) Point anomaly (c) Sequence anomaly

(b.1) single anomaly (b.2) multiple anomaly (c.1) single anomaly (c.2) multiple anomaly

Critical diagram (! = 0.05) Critical diagram (! = 0.05)

Critical diagram (! = 0.05) Critical diagram (! = 0.05) Critical diagram (! = 0.05) Critical diagram (! = 0.05)

(a) Entire benchmark
(a.1) Time series: Critical diagram (! = 0.05)

(a.2) Datasets: Critical diagram (! = 0.05)

Figure 7: Accuracy evaluation of 12 AD methods over (a) the bench-
mark. (b) depicts the accuracy evaluation on time series that contain
(b.1) single point anomaly and (b.2) multiple point anomalies. (c) de-
picts the evaluation on time series that contain (c.1) single collective
anomaly and (c.2) multiple collective anomalies.

(Figure 7(c)). We �rst observe that the rankings of the methods
are signi�cantly di�erent between these two categories. For point-
based, CNN and LSTM are signi�cantly better than the other meth-
ods. However, these twomethods are the third and the second-worst
for sequence-based anomalies. Overall, we observe that NORMA
and MP perform well on these two categories (�rst and second for
sequence-based and third and fourth for point-based).

Finally, we divide the two aforementioned categories into two
more categories: time series that contain single (Figure 7(b.1) and
(c.1)) and multiple anomalies (Figure 7(b.2) and (c.2)). We do not
observe big di�erences between these two categories. For instance,
LSTM and CNN remain the best two methods for single and mul-
tiple point-based anomalies. Moreover, there were no signi�cant
di�erences between NORMA, POLY, IForest, HBOS, LOF, PCA, and
MP for single sequence-based anomalies. However, the Wilcoxon
signed-rank test demonstrates that NORMAoutperformsMP and all
other methods for multiple sequence-based anomalies signi�cantly.

6.3 Use Cases: Comparisons Between Methods
Previously, we demonstrated that the performance of AD methods
vary signi�cantly among datasets and di�erent anomaly types. In
this section, we illustrate these variations with concrete examples.

Comparison between NORMA and MP: NORMA and MP
are among the best methods (according to the �ne-grained analysis
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Datasets IForest IForest1 LOF MP PCA NORMA HBOS POLY OCSVM AE CNN LSTM
AUC F RF AUC F RF AUC F RF AUC F RF AUC F RF AUC F RF AUC F RF AUC F RF AUC F RF AUC F RF AUC F RF AUC F RF

Dodgers 0.79 0.16 0.05 0.64 0.02 0.05 0.54 0.10 0.03 0.52 0.19 0.27 0.77 0.26 0.05 0.79 0.19 0.05 0.3 0.00 0.00 0.69 0.10 0.01 0.64 0.00 0.00 0.73 0.08 0.12 0.68 0.06 0.22 0.39 0.04 0.15
ECG 0.75 0.27 0.22 0.61 0.18 0.18 0.56 0.09 0.09 0.58 0.12 0.16 0.71 0.25 0.23 0.95 0.33 0.38 0.68 0.20 0.21 0.70 0.24 0.24 0.64 0.17 0.25 0.73 0.21 0.20 0.52 0.03 0.06 0.54 0.03 0.07
IOPS 0.54 0.04 0.02 0.78 0.25 0.18 0.50 0.08 0.02 0.72 0.10 0.04 0.74 0.17 0.04 0.76 0.12 0.05 0.64 0.11 0.02 0.68 0.11 0.03 0.71 0.14 0.08 0.63 0.13 0.08 0.61 0.09 0.13 0.61 0.10 0.14
MGAB 0.57 0.00 0.00 0.58 0.00 0.00 0.96 0.62 0.58 0.91 0.24 0.07 0.54 0.00 0.00 0.55 0.00 0.00 0.54 0.00 0.00 0.51 0.00 0.00 0.52 0.00 0.00 0.71 0.06 0.02 0.58 0.04 0.02 0.56 0.03 0.02
NAB 0.45 0.05 0.06 0.56 0.10 0.16 0.48 0.07 0.10 0.49 0.05 0.06 0.69 0.16 0.21 0.58 0.05 0.06 0.68 0.11 0.16 0.75 0.14 0.18 0.61 0.09 0.13 0.54 0.07 0.11 0.52 0.06 0.16 0.50 0.05 0.14
NASA-MSL 0.57 0.04 0.05 0.69 0.21 0.25 0.52 0.03 0.07 0.52 0.00 0.03 0.75 0.23 0.26 0.55 0.00 0.00 0.77 0.21 0.23 0.81 0.24 0.24 0.64 0.12 0.13 0.70 0.14 0.19 0.57 0.14 0.22 0.57 0.13 0.20
NASA-SMAP 0.72 0.21 0.22 0.68 0.13 0.18 0.68 0.20 0.24 0.62 0.18 0.20 0.74 0.25 0.29 0.80 0.19 0.21 0.77 0.27 0.28 0.80 0.20 0.27 0.65 0.31 0.38 0.77 0.33 0.35 0.68 0.17 0.22 0.64 0.14 0.23
SensorScope 0.56 0.00 0.02 0.56 0.06 0.13 0.55 0.09 0.13 0.50 0.02 0.02 0.54 0.05 0.06 0.59 0.01 0.02 0.56 0.02 0.03 0.62 0.09 0.11 0.51 0.04 0.07 0.52 0.03 0.10 0.52 0.04 0.21 0.53 0.05 0.21
YAHOO 0.62 0.06 0.05 0.81 0.18 0.19 0.86 0.11 0.09 0.86 0.06 0.04 0.57 0.06 0.05 0.92 0.11 0.13 0.57 0.07 0.06 0.76 0.08 0.07 0.50 0.03 0.02 0.79 0.06 0.05 0.96 0.47 0.51 0.94 0.46 0.47
KDD21 0.65 0.09 0.06 0.57 0.02 0.02 0.78 0.17 0.10 0.90 0.22 0.14 0.58 0.07 0.06 0.88 0.22 0.21 0.60 0.06 0.05 0.58 0.04 0.03 0.60 0.16 0.11 0.79 0.16 0.09 0.74 0.12 0.07 0.66 0.08 0.05
Daphnet 0.74 0.06 0.12 0.68 0.08 0.17 0.78 0.08 0.16 0.44 0.00 0.00 0.69 0.05 0.08 0.46 0.00 0.00 0.69 0.04 0.09 0.77 0.08 0.13 0.45 0.01 0.03 0.44 0.01 0.04 0.47 0.01 0.06 0.44 0.02 0.06
GHL 0.94 0.07 0.04 0.94 0.06 0.03 0.54 0.00 0.00 0.42 0.01 0.01 0.91 0.02 0.02 0.64 0.00 0.00 0.92 0.02 0.02 0.76 0.02 0.03 0.45 0.02 0.03 0.63 0.01 0.01 0.47 0.00 0.00 0.47 0.00 0.00
Genesis 0.78 0.00 0.00 0.66 0.19 0.09 0.68 0.00 0.00 0.35 0.00 0.00 0.85 0.00 0.00 0.6 0.00 0.00 0.59 0.00 0.00 0.87 0.32 0.26 0.70 0.03 0.00 0.72 0.01 0.01 0.73 0.02 0.02 0.53 0.01 0.01
MITDB 0.70 0.09 0.10 0.61 0.06 0.12 0.61 0.09 0.11 0.69 0.11 0.13 0.67 0.09 0.10 0.86 0.20 0.21 0.70 0.07 0.10 0.68 0.11 0.17 0.65 0.13 0.13 0.80 0.17 0.22 0.58 0.05 0.11 0.51 0.02 0.09
OPP 0.49 0.07 0.06 0.52 0.03 0.04 0.45 0.10 0.12 0.82 0.01 0.02 0.52 0.15 0.10 0.65 0.06 0.08 0.54 0.09 0.06 0.28 0.01 0.02 0.38 0.01 0.04 0.70 0.07 0.14 0.47 0.01 0.05 0.57 0.08 0.18
Occupancy 0.86 0.03 0.01 0.78 0.07 0.05 0.53 0.04 0.03 0.32 0.00 0.00 0.78 0.08 0.04 0.53 0.00 0.00 0.89 0.02 0.01 0.80 0.13 0.20 0.66 0.02 0.04 0.69 0.02 0.03 0.79 0.04 0.06 0.71 0.02 0.06
SMD 0.85 0.35 0.16 0.73 0.25 0.16 0.69 0.18 0.13 0.51 0.03 0.02 0.80 0.31 0.23 0.61 0.03 0.03 0.77 0.31 0.21 0.87 0.41 0.34 0.61 0.11 0.07 0.63 0.09 0.07 0.61 0.08 0.08 0.58 0.07 0.08
SVDB 0.72 0.19 0.19 0.58 0.08 0.13 0.59 0.14 0.17 0.74 0.17 0.19 0.68 0.19 0.20 0.92 0.33 0.33 0.71 0.15 0.17 0.67 0.18 0.20 0.68 0.15 0.17 0.79 0.18 0.22 0.58 0.07 0.14 0.55 0.06 0.14

Table 3: Average AUC, F, and RF accuracy measures for the 18 public datasets. Bold values indicate the best AUC result for each dataset.

(a) ECG dataset (b) MGAB dataset

(c) ECG dataset (d) MGAB dataset
Figure 8: (a,b) The comparison of NORMA and MP over ECG and
MGAB. NORMA outperforms MP in ECG and MP outperforms
NORMA in MGAB. (c,d) The comparisons among anomaly scores
for one ECG and oneMGAB data. From top to bottom: Real data and
MP and NORMA scores. ECG contains multiple repeated collective
outliers and MGAB contains multiple normal patterns.

above) and are designed to detect collective anomalies. In the ECG
dataset, the averageAUC forMP is signi�cantly lower thanNORMA.
However, in the MGAB dataset, we observe the opposite trend:
MP has a signi�cantly better performance than NORMA. We plot
the comparison between NORMA and MP in ECG and MGAB in
Figure 8. NORMA dominates nearly all series in ECG while MP
dominates all series in MGAB. This contrast is interesting because
both ECG andMGAB data are periodic, with some collective outliers
within one period that break the regular pattern. So we cannot
predict which algorithm is the best by visually observing the data
or types of anomalies. We need extra information: the cardinality
of the abnormal points and the variation of the normal points.

To better illustrate this point, Figure 8c shows a segment of the
ECG data with its corresponding anomaly scores obtained from MP
and NORMA. ECG data contains many repeated anomaly subse-
quences. MP calculates the 1-NN distance among subsequences but
the distances for the abnormal points are also small. The impact
of the repeated anomaly subsequences is re�ected in the anomaly
score. We observe a low anomaly score for MP at the center region
of anomalies. In contrast, NORMA o�ers a good detection because
NORMA does not consider the absolute distance to its neighboring
points and is immune to the cardinality of the abnormal points.

Figure 8d shows a similar comparison for a MGAB time series.
The critical di�erence between the MGAB and ECG datasets is that
MGAB data contains several patterns while ECG data only has one
pattern. Another di�erence is that the MGAB has only 10 collective
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(b) 92 synthetic datasets: 

(a.2) NORMA vs IForest(a.1) NORMA vs POLY(a) 126 artificial datasets: 

Figure 9: Ranking of algorithms based on the average of their ranks
across (a) 126 arti�cial datasets and (b) 92 synthetic datasets.U = 0.05.
(a.1,a.2) Comparison ofNORMA, POLY, and IForest over 126 arti�cal
datasets. Each point in the scatter plot indicates one dataset.

outliers per series while ECG has 195.6 collective outliers per series.
The collective outliers in MGAB are sparse and quite di�erent from
each other. In this scenario, MP has a high performance to detect the
isolated anomaly. NORMA calculates the weighted distance of each
point to all normal centroids. The variation of the normal clusters
makes normal points to also get a large distance (Figure 8d), which
complicates the detection of anomalies for NORMA in that case.
The comparison among these two algorithms show the importance
of two factors: number of anomalies and anomaly normality.

Comparisons among NORMA, MP, IForest, and POLY:We
also apply Nemenyi test on 126 arti�cial datasets (Fig. 9(a)) and
92 synthetic datasets (Fig. 9(b)), respectively. Interestingly, MP is
the top measure in the arti�cial datasets with an average rank of
1.18 and is signi�cantly better than NORMA with a 95% con�dence
level. In contrast, in the synthetic datasets, NORMA is the top mea-
sure with an average rank of 1.48 and signi�cantly outperforms
MP with a 95% con�dence level. This contradictory result comes
from an arti�cial bias rooted in the anomaly construction method.
When we construct the series in the arti�cial datasets, we only
pick one or two subsequences from the abnormal labels and twenty
subsequences from every normal label. Due to this unbalanced sam-
pling, the average distance among normal subsequences is usually
smaller than the one among abnormal subsequences. So statisti-
cally, the anomaly subsequence has a much larger 1-NN distance
than the normal subsequences, and MP bene�ts from this property.
We also observe that NORMA signi�cantly outperforms IForest
and that IForest and POLY do not present a signi�cant di�erence.
PCA is ranked last and does not present a signi�cant di�erence
from POLY. We also plot the AUC comparison over each dataset
between NORMA and POLY (Fig. 9(a.1)). Most of the datasets fall
above the diagonal line of the scatter plot, which forms a contrast
with the good performance of POLY in the public datasets. A similar
comparison between NORMA and IForest is shown in Fig. 9(a.2).
NORMA outperforms IForest in 111 out of 126 datasets.
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Figure 10: Computation time of di�erent algorithms on MITDB,
GHL, and Genesis dataset. Y-axis is in log10-scale. All computations
have been performed on a single process in CPU.
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Figure 11: AUC vs global transformations for each dataset based on
NORMA and IForest. x-axis indicates the strength.

Next, we focus on three of the strongest methods (MP, NORMA,
IForest) for the arti�cial datasets and re-test them in 92 synthetic
datasets obtained by applying eight di�erent global or local transfor-
mations with varying strengths of disorders or contamination ratios.
We believe the Nemenyi test on this catogory is representative for
the general case. Figure 9(b) shows that NORMA is signi�cantly bet-
ter than MP. In addition, NORMA signi�cantly outperforms IForest,
which is consistent with the result in the arti�cial datasets. Finally,
Figure 10 shows the comparison of the computation time for all
models based on three datasets (ran in CPU). The computation time
of neural network models are an order of magnitude higher than
the other models. POLY and PCA have the best computation time.

6.4 Impact of transformations
In this section, we discuss the e�ects of local and global transfor-
mations over the public datasets. For the transformations with-
out introducing new outliers (adding random-walk background,
smoothing, or add white noise), we build the relationship between
the average AUC of NORMA and IForest and the strength of trans-
formations in Fig. 11. We observe the negative correlation between
the AUC and transformation strength for random-walk background
and white noise, which is consistent with the intuition. There is no
evident correlation between the AUC and smoothing window. The
only exception occurs at the NAB dataset with IForest algorithm.
In the �rst panel of Fig. 11(b), the AUC of the NAB dataset �rst
increases from 0.452 to 0.615, then drops to 0.589. A similar pattern
also occurs in the white noise panel (Fig. 11(b)).

Figure 12 shows the trend of average AUC over all synthetic
datasets relative to the strengths of three anomaly-free transfor-
mations. NORMA outperforms IForest and MP under all cases. We
observe a �ipping of AUC between IForest and MP around white
noise ?F= = 0.25, so IForest is more resilient compared to MP.

For the transformations that introduce new outliers, for example,
adding point anomalies, adding some pattern-related, or frequency-
related anomalies, we also build the relationship between the av-
erage AUC and the contamination ratio introduced by the corre-
sponding transformations (Fig. 13). We do not observe any strong

Figure 12: The variations of the averageAUC relative to the strength
of transformations over all datasets.

Figure 13: AUC vs. Local transformed data.x-axis indicates the con-
tamination ratio of the local transformations.

Figure 14: Avg. AUC vs. #2 , #0 , and '2 on synthetic datasets.

correlations as it is di�cult to isolate new from old anomalies.
However, new anomalies do not degrade the overall performance.

6.5 Di�culty of dataset
To supplement the Friedman test and describe the di�culty of the
dataset from another perspective, we build the correlation between
the average AUC with NC, NA, and RC, which describe the relative
position between normal and abnormal data (Fig. 14). POLY and
PCA’s average AUC �uctuate around 0.5, so we focus on the other
three models: MP, NORMA, and IForest. A larger NC indicates
outliers are closer to each other and are more likely to form clusters.
The AUC for the three algorithms decrease 27%, 25%, and 31%,
respectively, with the increase of NC from 0.5 to 2.5. When NC>1,
NORMA has a relatively stable performance compared withMP. MP
depends on the 1-NN distance. Hence, the clustering of abnormal
points has a more evident impact on MP. Similarly, it is also hard
for IForest to isolate an anomaly point from a cluster. A larger NA
indicates the outlier is more distant from the normal cluster. We
observe a positive correlation between AUC and NA for IForest and
NORMA, which increase 20% and 45% when NA increases from 0.6
to 4.3. MP does not present a strong correlation with NA. We also
observe the improvement of NORMA in this case.

7 CONCLUSION
In this work, we proposed TSB-UAD an end-to-end benchmark for
univariate time-series anomaly detection. Our benchmark covers a
wide range of anomalies, provides eleven transformation methods
to emulate the types of anomalies, and synthesizes datasets with
di�erent levels of similarity between normal and abnormal subse-
quences. We believe TSB-UAD can provide a uniform platform to
compare di�erent methods across di�erent realistic scenarios and
assist in the identi�cation of robust AD methods.
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