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ABSTRACT
Anomaly detection (AD) is a fundamental task for time-series an-
alytics with important implications for the downstream perfor-
mance of many applications. In contrast to other domains where
AD mainly focuses on point-based anomalies (i.e., outliers in stan-
dalone observations), AD for time series is also concerned with
range-based anomalies (i.e., outliers spanning multiple observa-
tions). Nevertheless, it is common to use traditional point-based
information retrieval measures, such as Precision, Recall, and F-
score, to assess the quality of methods by thresholding the anomaly
score to mark each point as an anomaly or not. However, mapping
discrete labels into continuous data introduces unavoidable short-
comings, complicating the evaluation of range-based contextual
and collective anomalies. Notably, the choice of evaluation measure
may signi�cantly bias the experimental outcome. Despite over six
decades of attention, there has never been a large-scale systematic
quantitative and qualitative analysis of time-series AD evaluation
measures. This paper extensively evaluates quality measures for
time-series AD to assess their robustness under noise, misalign-
ments, and di�erent anomaly cardinality ratios. Our results indicate
that measures producing quality values independently of a thresh-
old (i.e., AUC-ROC and AUC-PR) are more suitable for time-series
AD. Motivated by this observation, we �rst extend the AUC-based
measures to account for range-based anomalies. Then, we intro-
duce a new family of parameter-free and threshold-independent
measures, VUS (Volume Under the Surface), to evaluate methods
while varying parameters. Our �ndings demonstrate that our four
measures are signi�cantly more robust and helpful in assessing and
separating the quality of time-series AD methods.
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1 INTRODUCTION
Massive collections of time-varying measurements, commonly re-
ferred to as time series or data series, are becoming a reality in
virtually every scienti�c and industrial domain [4, 28]. Notably,
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(a) Robustness evaluation to lag evaluated over 678 data series  

(b) Robustness evaluation to noise evaluated over 678 data series  

(c) Robustness evaluation to normal/abnormal ratio evaluated over 678 data series  

(a) Critical diagram computed using the F score

(b) Critical diagram computed using the range-based F score
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Figure 1: Critical di�erence diagram computed with the Friedman
test followed by a post-hoc Wilcoxon test (with U = 0.1) for the (a) F-
score and (b) range-based F-score over 250 time series in KDD21 [18].
Bold lines indicate insigni�cant di�erences of connected methods.

there is an increasingly pressing need for developing techniques for
e�cient and e�ective analysis of zettabytes of time series produced
by millions of Internet-of-Things (IoT) devices [14, 16]. IoT deploy-
ments empower diverse data science applications in environmental
sciences, astrophysics, neuroscience, and engineering, among oth-
ers [27, 39], and have revolutionized many industries, including
automobile, healthcare, manufacturing, retail, and utilities, among
others [25]. Unfortunately, imperfections and inherent complexities
in the data generation and measurement pipelines often introduce
abnormalities that appear as anomalies in time-series databases,
impacting the e�ectiveness of downstream tasks and analytics.

Consequently, anomaly detection (AD) becomes a fundamental
problem with broad applications sharing the same goal [5, 31, 37]:
analyzing time series to identify observations that do not conform
to some notion of expected behavior based on previously observed
data. During the past decades, a multitude of AD methods have
been proposed and compared [8–10, 21, 37]. Di�erent from other do-
mains that principally focus on point-based anomalies (i.e., outliers
in standalone observations), AD for time series is also concerned
with range-based anomalies (i.e., outliers spanning multiple ob-
servations). Unfortunately, it has become common practice to use
traditional point-based information retrieval (IR) accuracy evalua-
tion measures, such as Precision, Recall, and F-score, to quantify
the e�ectiveness of di�erent anomaly detectors.

In addition, the previously mentioned IR evaluation measures
su�er from a signi�cant limitation: a threshold is necessary over the
anomaly score produced by AD methods to mark each time-series
point as an anomaly or not. The most common approach to set
a threshold value is to use the average score plus three times the
standard deviation of the anomaly score. However, this popular
choice might not suit every AD method, use case, and domain, lead-
ing to signi�cant variations in the quality values of the previously
mentioned evaluation measures. Therefore, these IR measures are



di�cult to trust and complicate evaluating di�erent ADmethods on
heterogeneous benchmarks. To eliminate the need to set a thresh-
old, another standard measure for binary classi�cation is used: the
receiver operator characteristic (ROC) curve and the Area Under
the Curve (AUC), which is the area below the ROC curve (AUC-
ROC). The ROC curve is generated by plotting the true positive
rate (TPR) against the false positive rate (FPR) at various threshold
settings (instead of only one threshold used in Precision, Recall,
and F-score measures). Another variant, the Precision-Recall (PR)
curve, represents the relation between Precision and Recall, and
the Area under the PR curve (AUC-PR) is the area below PR [11].

Unfortunately, all previous measures, Precision, Recall, F-Score,
AUC-ROC, and AUC-PR, are ideal for point-based anomalies but
cannot adequately evaluate ubiquitous range-based contextual and
collective anomalies [7]. Remarkably, the mapping of discrete labels
into continuous data introduces unavoidable shortcomings (e.g.,
di�culty in marking precisely the range of the anomalies and han-
dling misalignments between the human labels and the anomaly
range produced by thresholding the anomaly score). To address
these shortcomings, a range-based de�nition of Precision and Re-
call has been proposed by extending the traditional de�nitions [32].
Range-based Precision, Recall, and F-Score consider several factors:
(i) whether a subsequence is detected or not; (ii) howmany points in
the subsequence are detected; (iii) which part of the subsequence is
detected; and (iv) how many fragmented regions correspond to one
real subsequence outlier. This de�nition is detailed and comprehen-
sive; however, several parameters require tuning and, importantly,
a threshold over the anomaly score is still required.

Despite over six decades of attention [13, 26, 34], there has never
been (to the best of our knowledge) a large-scale systematic quanti-
tative and qualitative analysis of time-series AD evaluation mea-
sures. Notably, the choice of evaluation measure may signi�cantly
bias the experimental outcome. To understand the implications
of choosing an appropriate measure, Figure 1 depicts the critical
diagrams of the F-score and range-based F-score computed with
the Friedman test followed by a Wilcoxon test [35] over several AD
methods (see Section 5 for details) across the 250 time series of the
KDD21 dataset [18]. Figure 1 demonstrates that not only the rank-
ing is changing, but also some methods shift from insigni�cantly
to signi�cantly di�erent from one measure to the other.

In this paper, we extensively evaluate quality measures for time-
series AD to assess their robustness under noise, misalignments,
and di�erent anomaly cardinality ratios. Speci�cally, our study in-
cludes 9 previously proposed quality measures, computed over the
anomaly scores of 10 AD methods across 10 previously proposed
diverse datasets that contain 900 time series with marked anomalies.
Our analysis assess the robustness of quality measures both quali-
tatively and quantitatively by studying the in�uence of threshold,
lag, noise, and normal-abnormal anomaly ratio to identify robust
quality measures that can better separate the accurate from inaccu-
rate methods. Our results indicate that measures producing quality
values independently of a threshold (i.e., AUC-ROC and AUC-PR)
are more suitable for time-series AD. This is surprising consider-
ing that we include the range-based Precision, Recall, and F-score
measures, which highlights the strong in�uence the thresholding
of anomaly scores has in assessing the quality of methods.

Motivated by this observation and to address the limitations
of existing measures, we propose four new accuracy evaluation
measures. We �rst present Range-AUC-ROC and Range-AUC-PR,

Accuracy Measure # of anomalies Score Threshold Sequence-adapted Parameter-free
Precision@k 7 7 7
Precision 7 7 7
Recall 7 7 7
F-Score 7 7 7

Rprecision 7 7
Rrecall 7 7
RF-Score 7 7
AUC-PR 7
AUC-ROC 7

Proposed measures
R-AUC-PR 7
R-AUC-ROC 7
VUS-PR
VUS-ROC

Table 1: Analysis of quality measures based on: (i) independence to
the number of annotated anomalies; (ii) independence to the thresh-
old on the anomaly score; (iii) adaptation to continuous sequences;
and (iv) independence to setting parameters. Our VUS-based mea-
sures match all characteristics while competitors miss one or more.

threshold-independent (for the anomaly score) evaluation measures
that use a continuous bu�er region in the labels to increase the
robustness to potential misalignments with the human labels. Then,
we propose the Volume Under the Surface (VUS) family of measures
that extend the traditional AUCmeasures to consider all bu�er sizes
(in addition to all thresholds). Therefore, VUS-ROC and VUS-PR are
parameter-free, threshold-independent, and robust to lags, noise,
and anomaly cardinality ratios. Our analysis demonstrates that VUS-
ROC and VUS-PR are the most reliable accuracy quality measures
for both point-based and range-based anomalies evaluation. Table 1
summarizes the accuracy evaluation measures analysed in this
paper based on their independence to four critical characteristics.

Interestingly, even though outside of the scope of this paper, the
�exibility of VUS measures in evaluating methods while varying
parameters of choice may have profound implications beyond time-
series AD. Speci�cally, VUS measures are applicable across binary
classi�cation tasks for evaluating methods with a single quality
value while considering di�erent parameter choices (e.g., learning
rates, batch sizes, and other critical varying parameters). Similarly,
with the rise of new machine learning (ML) techniques for AD
and binary classi�cation, the integration of VUS measures into the
objective functions may result in substantially more robust models.

We start with a detailed discussion of the relevant background
and related work (Section 2). Then, we present our contributions:
• We describe and study the limitations of existing evaluation

measures, resulting in a formal de�nition of the necessary prin-
ciples of time-series AD quality measures (Section 3).

• We present R-AUC-ROC and R-AUC-PR that rely on a new
label transformation to make their score robust and reliable for
range-based contextual and collective anomalies (Section 4.1).

• We introduce VUS-ROC and VUS-PR, parameter-free measures
that formally extend the mathematical model of AUC-based
measures to consider more varying parameters (Section 4.2).

• We extensively evaluate, both qualitatively and quantitatively,
13 quality measures (9 previously proposed and our 4 new mea-
sures) across 10ADmethods over 10 diverse datasets containing
900 time series with marked anomalies (Sections 5.2 and 5.3).

• We analyze the separability of the measures by evaluating
changes in AD methods’ ranks across measures (Section 5.4).

Finally, we conclude with the implications of our work (Section 6).



2 BACKGROUND AND RELATED WORK
We �rst introduce formal notations useful for the rest of the pa-
per (Section 2.1). Then, we review in detail previously proposed
evaluation measures for time-series AD methods (Section 2.2).

2.1 Time-Series and Anomaly Score Notations
We review notations for the time series and anomaly score sequence.
Time Series: A time series ) 2 R= is a sequence of real-valued
numbers)8 2 R [)1,)2, ...,)=], where = = |) | is the length of) , and
)8 is the 8C⌘ point of ) . We are typically interested in local regions
of the time series, known as subsequences. A subsequence)8,✓ 2 R✓
of a time series) is a continuous subset of the values of) of length
✓ starting at position 8 . Formally, )8,✓ = [)8 ,)8+1, ...,)8+✓�1].
Anomaly Score Sequence: For a time series ) 2 R= , an AD
method � returns an anomaly score sequence () . For point-based
approaches (i.e., methods that return a score for each point of
) ), we have () 2 R= . For range-based approaches (i.e., methods
that return a score for each subsequence of a given length ✓), we
have () 2 R=�✓ . Overall, for range-based (or subsequence-based)
approaches, we de�ne () = [() 1, () 2, ..., () =�✓ ] with () 8 2 [0, 1].
2.2 Accuracy Evaluation Measures for AD
We present previously proposed quality measures for evaluating the
accuracy of an AD method given its anomaly score. We �rst discuss
threshold-based and, then, threshold-independent measures.
2.2.1 Threshold-based AD Evaluation Measures.
The anomaly score () produced by an AD method � highlights
the parts of the time series ) considered as abnormal. The highest
values in the anomaly score correspond to themost abnormal points.
Threshold-based measures require to set a threshold to mark each
point as an anomaly or not. Usually, this threshold is set to ` (() ) +
U ⇤ f (() ), with U set to 3 [5], where ` (() ) is the mean and f (() )
is the standard deviation () . Given a threshold )⌘A4B , we compute
the ?A43 2 {0, 1}= as follows:

88 2 [1, |() |], ?A438 =
(
0, if: () 8 < )⌘A4B

1, if: () 8 � )⌘A4B
(1)

Threshold-based measures compare ?A43 to ;014; 2 {0, 1}= ,
which indicates the true (human provided) labeled anomalies. Given
the Identity vector � = [1, 1, ..., 1], the points detected as anomalies
or not fall into the following four categories:
• True Positive (TP): Number of points that have been correctly

identi�ed as anomalies. Formally: )% = ;014;> · ?A43 .
• TrueNegative (TN): Number of points that have been correctly

identi�ed as normal. Formally: )# = (� � ;014;)> · (� � ?A43).
• False Positive (FP): Number of points that have been wrongly

identi�ed as anomalies. Formally: �% = (� � ;014;)> · ?A43 .
• False Negative (FN): Number of points that have been wrongly

identi�ed as normal. Formally: �# = ;014;> · (� � ?A43).
Given these four categories, several quality measures have been
proposed to assess the accuracy of AD methods.
Precision: We de�ne Precision (or positive predictive value) as
the number correctly identi�ed anomalies over the total number of
points detected as anomalies by the method:

%A428B8>= =
)%

)% + �%
(2)

Recall: We de�ne Recall (or True Positive Rate (TPR), C?A ) as the
number of correctly identi�ed anomalies over all anomalies:

'420;; =
)%

)% + �#
(3)

False Positive Rate (FPR): A supplemental measure to the Recall
is the FPR, 5 ?A , de�ned as the number of points wrongly identi�ed
as anomalies over the total number of normal points:

5 ?A =
�%

�% +)# (4)

F-Score: Precision and Recall evaluate two di�erent aspects of
the AD quality. A measure that combines these two aspects is the
harmonic mean �V , with non-negative real values for V :

�V =
(1 + V2) ⇤ %A428B8>= ⇤ '420;;

V2 ⇤ %A428B8>= + '420;;
(5)

Usually, V is set to 1, balancing the importance between Precision
and Recall. In this paper, �1 is referred to as F or F-score.
Precision@k: All previous measures require an anomaly score
threshold to be computed. An alternative approach is to measure
the Precision using a subset of anomalies corresponding to the :
highest value in the anomaly score () . This is equivalent to setting
the threshold such that only the : highest values are retrieved.

To address the shortcomings of the point-based quality mea-
sures, a range-based de�nition was recently proposed, extending
the mathematical models of the traditional Precision and Recall
[32]. This de�nition considers several factors: (i) whether a subse-
quence is detected or not (ExistenceReward or ER); (ii) how many
points in the subsequence are detected (OverlapReward or OR);
(iii) which part of the subsequence is detected (position-dependent
weight function); and (iv) how many fragmented regions corre-
spond to one real subsequence outlier (CardinalityFactor or CF).
Formally, we de�ne ' = {'1, ...'#A } as the set of anomaly ranges,
with ': = {?>B8 , ?>B8+1, ..., ?>B8+9 } and 8?>B 2 ': , ;014;?>B = 1,
and % = {%1, ...%#? } as the set of predicted anomaly ranges, with
%: = {?>B8 , ?>B8+1, ..., ?>B8+9 } and 8?>B 2 ': , ?A43?>B = 1. Then,
we de�ne ER, OR, and CF as follows:

⇢' ('8 , % ) =
(
1, if

Õ#?
9=1 |'8 \ % 9 | � 1

0, otherwise

⇠� ('8 ,% ) =
⇢
1, if 9%8 2 %, |'8 \ %8 | � 1
W ('8 ,% ), otherwise

$' ('8 ,% ) = ⇠� ('8 ,% ) ⇤
#?’
9=1

l ('8 ,'8 \ % 9 ,X)

(6)

The W (),l (), and X () are tunable functions that capture the cardi-
nality, size, and position of the overlap respectively. The default
parameters are set to W () = 1, X () = 1 and l () to the overlap ratio
covered by the predicted anomaly range [32].
Rprecision and Rrecall [32]: Based on the above, we de�ne:

'?A428B8>= (', % ) =
Õ#?

8=1 '?A428B8>=B (', %8 )
#?

'?A428B8>=B (', %8 ) = ⇠� (%8 ,') ⇤
#A’
9=1

l (%8 ,%8 \ ' 9 ,X)
(7)

'A420;; (', % ) =
Õ#A

8=1 'A420;;B ('8 ,% )
#A

'A420;;B ('8 , % ) = U ⇤ ⇢' ('8 , % ) + (1 � U) ⇤$' ('8 ,% )
(8)

The parameter U is user de�ned. The default value is U = 0.
Range F-score (RF) [32]: As described previously, the F-score
combines Precision and Recall. Similarly, we de�ne '�V , with non-
negative real values for V as follows:

'�V =
(1 + V2) ⇤ '?A428B8>= ⇤ 'A420;;

V2 ⇤ '?A428B8>= + 'A420;;
(9)

As before, V is set to 1. In this paper, '�1 is referred to as RF-score.



2.2.2 Threshold-independent AD Evaluation Measures.
Until now, we introduced accuracy measures requiring to threshold
the produced anomaly score of ADmethods. However, the accuracy
values vary signi�cantly when the threshold changes. In order to
evaluate a method holistically using its corresponding anomaly
score, two measures from the AUC family of measures are used.
AUC-ROC [12]: The Area Under the Receiver Operating Charac-
teristics curve (AUC-ROC) is de�ned as the area under the curve
corresponding to TPR on the y-axis and FPR on the x-axis when
we vary the anomaly score threshold. The area under the curve is
computed using the trapezoidal rule. For that purpose, we de�ne
)⌘ as an ordered set of thresholds between 0 and 1. Formally, we
have )⌘ = [)⌘0,)⌘1, ...)⌘# ] with 0 = )⌘0 < )⌘1 < ... < )⌘# = 1.
Therefore, �*⇠-'$⇠ is de�ned as follows:

�*⇠-'$⇠ =
1
2

#’
:=1

�:)%' ⇤ �:�%'

with:

(
�:�%' = �%'()⌘: ) � �%'()⌘:�1)
�:)%' = )%'()⌘:�1) +)%'()⌘: )

(10)

AUC-PR [11]: The Area Under the Precision-Recall curve (AUC-
PR) is de�ned as the area under the curve corresponding to the
Recall on the x-axis and Precision on the y-axis when we vary the
anomaly score threshold. As before, the area under the curve is
computed using the trapezoidal rule. Thus, we de�ne AUC-PR:

�*⇠-%' =
1
2

#’
:=1

�:%A428B8>= ⇤ �:'420;;

with:

(
�:'420;; = '420;; ()⌘: ) � '420;; ()⌘:�1)
�:%A428B8>= = %A428B8>=()⌘:�1) + %A428B8>=()⌘: )

(11)

A simpler alternative to approximate the area under the curve is to
compute the average Precision of the PR curve:

�*⇠-%' =
#’
:=1

%A428B8>=()⌘: ) ⇤ �:'420;; (12)

In this paper, we use the above equation to approximate AUC-PR.

3 PROBLEM MOTIVATION AND LIMITATIONS
Having introduced existing measures to assess the quality of range-
based anomalies, we now elaborate on their critical limitations.

3.1 Limitations of Threshold-based Measures
The need to threshold the anomaly score severely impacts the ac-
curacy measures. First, Figure 2(a) depicts an electrocardiogram
time series with an arrhythmia in red (Figure 2(a.1)) and the corre-
sponding anomaly score computed with Isolation Forest [22] (Fig-
ure 2(a.2)) for one threshold equal to ` (B2>A4) + f (B2>A4) and for
another threshold ` (B2>A4) +0.6⇤f (B2>A4) (Figures 2(a.3) and (a.4)).
We compute the di�erent accuracy measures for the �rst threshold
(blue bars in Figure 2(a.5)) and the second threshold (orange bars
in Figure 2(a.5)) and their di�erences (Figure 2(a.6)). We observe
that the threshold choice have a strong impact on Precision, Rpreci-
sion, F and RF scores. On the contrary, the threshold-independent
measures (i.e., measures computing all possible thresholds), namely,
AUC-ROC and AUC-PR, show a clear advantage.

Overall, the threshold choice dependents on the application and
the type of input time series. Setting the threshold automatically is
hard and almost impossible when we compare di�erent categories
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Figure 2: Accuracy evaluation measures when we vary the (a) thresh-
old, (b) lag, (c) noise, and (d) normal/abnormal ratio. Example with
Isolation Forest methods over a snippet of the MBA(805) time series.

of AD methods across heterogeneous benchmarks. To illustrate this
point, we consider two transformations of the anomaly score that
correspond to practical cases we observed (e.g., di�erent methods
introduce di�erent lag and noise levels to the anomaly score).
In�uence of Noise: Some AD methods applied to some speci�c
time series might result in a noisy anomaly score. In addition, due
to manufacturing issues or external causes, a sensor can inject noise
on the time series, which then propagates on the anomaly score.
Figure 2(c) is depicting two cases: the �rst corresponds to an anom-
aly score without any noise (Figure 2(c.2)). The second corresponds
to an anomaly score with noise (Figure 2(c.2)). We applied on both
cases the same threshold ` (B2>A4) + f (B2>A4). We observe in Fig-
ure 2(c.6) that most of the threshold-based measures are strongly
impacted by noise. This is caused by the fact that the score �uctu-
ates around the threshold, making threshold-based measures less
robust to noise. On the contrary, AUC-ROC and AUC-PR are much
less in�uenced by noise, returning approximately the same value.
In�uence of Normal/Abnormal Ratio: Depending on the do-
main and the task, the number of anomalies and consequently the



normal/abnormal ratio changes drastically. A variation on this ratio
might cause a variation on the threshold, which leads to variations
on threshold-based accuracy measures values. This is explained by
the fact that if an anomaly score detects the anomalies correctly,
the standard deviation of that score will be higher for a time series
with more anomalies. Figure 2(d) depicts two cases: one time series
snippet with a 0.2 ratio (Figure 2(d.2)) and one time series snip-
pet with a 0.05 ratio (Figure 2(d.4)). We observe that this change
implies a larger variation for several threshold-based measures.
Thus, the latter con�rms the limitations and the non-robustness of
threshold-based measures to the anomaly cardinality ratio.

3.2 Limitations of Point-based Measures
In the previous section, we illustrated the limitations of threshold-
based measures. By design and because of their independence to
the threshold choice, AUC-ROC and AUC-PR measures are robust
to those limitations. However, those measures are designed for
point-based outliers. Each point is considered independently and
the detection of each point has an equivalent contribution to AUC.
In contrast, we need to consider two factors, the range detection
and the existence detection, for the subsequence AD problem.

The range detection has the same methodology as point de-
tection. We prefer that the algorithm detects every point in the
subsequence anomaly. The existence detection is a loose but crucial
estimation for the anomaly subsequence detector: detecting a tiny
segment of one subsequence outlier is still of great value.
Mismatch between the anomaly score and labels: Compared
to point-based AD, the range-based AD encourages accurately cap-
turing each subsequence anomaly, but the existence detection is
good enough to be partially rewarded. Two other reasons support
the application of this coarse estimation.

First, there is no consistent labeling tradition among di�erent
datasets. Some people may label the whole period as an anomaly if
this period does not repeat the typical pattern, while others may
only mark a partial period. Even if we specify that each period
should share the same label, the next question is how to de�ne
the starting and end points of one period. Giving accurate starting
or end points, it is also challenging to label a small segment in
one period. Unlike a point outlier, which appears to be an evident
deviation to the trend line of the time series, range-based anom-
alies may not have outrageous values. This di�culty of labeling
is inevitable when we assign the discrete labels to a continuous
time series. There may be some transition region between the two
statuses, but we have to decide on a discontinuous jumping point
between the two statuses arti�cially.

Secondly, many algorithms, for instance, LOF [10] and iForest
[22], would �rst apply a sliding window to convert a 1-D time series
to a set of high-dimensional data points. We denote the original
time series as ()1,)2, . . . ,)=), and suppose the length of window is ✓ ,
then the converted data set is {()8 , . . . ,)8+✓�1) |8 2 {1, . . .) � ✓ + 1}}.
The label of point ): in the time series is de�ned as the label of
high-dimensional point ():�✓/2, . . . ,):+✓/2�1) in the transformed
dataset. The conversion from time series to data set has one conse-
quence: every dimension in the high-dimensional point is equally
important. So an abnormal value at the middle or end of this point
has the same ability to make it an outlier in the high-dimensional
space. Usually, if the sliding window covers more anomaly points,
a good algorithm should give a higher anomaly score to the con-
verted data point. However, there are some exceptions that one

abnormal value at the beginning or the end of sliding windows is
enough to make the converted point an outlier. To summarize, an
anomaly subsequence ()B , . . . ,)4 ) may induce a high anomaly score
for the range [)B�✓/2,)4+✓/2]. A perfect result is that the peak of the
anomaly score is slightly broader than the whole abnormal region.
However, the anomaly score is not perfect. A high anomaly score
may be assigned at the range [)B�✓/2,)B ], which fails to reveal the
entire range of the subsequence outlier but succeed in indicating
their starting region. AUC-based measures will give a low value
since there is no overlap between the score peak and the outlier.
Overall Limitations due to Lag: A lag can be injected into the
anomaly score depending on the choice of AD method. Overall
such a lag may also exist by the approximation made during the
labeling phase. As illustrated in Figure 2(b), such a lag (even though
small) has a substantial impact on all existing evaluation measures.
For example, in Figure 2(b) AUC-PR �uctuates between 0.75 and
0.50 for a lag of just 0.25 of the labeled section length. Among all
measures, only the AUC-ROC measure demonstrates to be less
sensitive to such lag (as well as noise and normal/abnormal ratio).

3.3 Problem De�nition
In summary, our goal is to develop a new parameter-free and anom-
aly score threshold-independent evaluation measure based on the
robust principles of AUC. A promising direction is an extension of
AUC for the range-based AD with the following desired properties:
• Robust to Lag: Two similar anomaly scores with a slight lag

di�erence should return approximately the same accuracy mea-
sures. For example, a high anomaly score near the border of the
anomaly should be rewarded as close as a high anomaly score
in the middle of the range-based anomaly.

• Robust to Moise: Two similar anomaly scores with and with-
out noise should return approximately the same accuracy.

• Robust to the Anomaly Cardinality Ratio: This ratio should
not have an impact on the accuracy measures.

• High Separability between Accurate and InaccurateMeth-
ods: While satisfying the previous points, the accuracy measure
should well separate accurate from inaccurate methods.

Next, we present new accuracy measures to satisfy these properties.

4 OUR MEASURES: RANGE-AUC AND VUS
We �rst present new range-based extensions for ROC and PR curves
by introducing a new continuous label to enable more �exibility in
measuring detected anomaly ranges. We then present the Volume
Under the Surface (VUS) for both ROC and PR curves. VUS extents
the mathematical model of Range-AUC measures by varying the
bu�er length, making VUS family of measures truly parameter-free.

4.1 Range-AUC-ROC and Range-AUC-PR
To compute the ROC curve and PR curve for a subsequence, we
need to extend to de�nitions of TPR, FPR, and Precision.

The �rst step is to add a bu�er region at the boundary of out-
liers. The idea is that there should be a transition region between
the normal and abnormal subsequences to accommodate the false
tolerance of labeling in the ground truth (as discussed, this is un-
avoidable due to mapping of discrete data to continuous time series).
An extra bene�t is that this bu�er will give some credit to the high
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Figure 3: Illustration of previous quality measures compared to our proposed measures. By varying the bu�er window from 0 to the period,
VUS constructs a surface of TPR, FPR, and window. The volume under the surface is a measure of AUC for various windows.

anomaly score in the vicinity of the outlier boundary, which is what
we expected with the application of a sliding window originally.

Figure 3(b) shows the original binary labels (in blue) and Fig-
ure 3(c) the new label with bu�er region (in orange). By default, the
width of the bu�er region at each side is half of the periodF of the
time series (the period is an intrinsic characteristic of time series).
Di�erently, this parameter can be set into the average length of
anomaly sizes or can be set to a desired value by the user.

The traditional binary label is extended to a continuous value.
Formally, for a given bu�er length ✓ , the positions B, 4 2 [0, |;014; |]
the beginning and end indexes of a labeled anomaly (i.e., sections of
continuous 1 in ;014; ), we de�ne the continuous ;014;A as follows:

88 2 [0, |;014; | ], ;014;✓ 8 =

8>>>>>>>>><
>>>>>>>>>:

✓
1 � |B�8 |

✓

◆ 1
2

if: B � ✓
2  8 < B

1 if: B  8 < 4✓
1 � |4�8 |

✓

◆ 1
2

if: 4  8 < 4 + ✓
2

0 if: 8 < B and 4 < 8

(13)

When the bu�er regions of two discontinuous outliers overlap, the
label will be the superposition of these two orange curves with one
as the maximum value. Using this new continuous label, one can
compute TP/FP/TN/FN similarly as follows:

)%✓ = ;014;>✓ · ?A43
�%✓ = (� � ;014;✓ )> · ?A43
)#✓ = (� � ;014;✓ )> · (� � ?A43)
�#✓ = ;014;>✓ · (� � ?A43)

(14)

The total number of positive points P in this case naively should be
%✓0 = )%✓ + �#✓ = ;014;>✓ · � . Here, we de�ne it as:

%✓ = (;014; + ;014;✓ )> · �
2

#✓ = |;014;✓ | � %✓
(15)

The reason is twofold. When the length of the outlier is several
periods, %✓0 and %✓ are similar because the ratio of bu�er region to
the whole anomaly region is small. When the length of the outlier is
only half-period, the size of the bu�er region is nearly two times the

original abnormal region. In other words, to pursue false tolerance,
the relative change we make to the ground truth is too signi�cant.
We use the average of ;014; and ;014;✓ to limit this change.

We �nally generalize the point-based '420;; , %A428B8>=, and �%'
to the range-based variants. Formally, following the de�nition of '
and % as the set of anomalies range and detected predicted anomaly
range (see Section 2.2), we de�ne )%'✓ , �%'✓ , and %A428B8>=✓ :

)%'✓ = '420;;✓ =
)%✓
%✓

⇤
’
'8 2'

⇢G8BC4=24'('8 , %)
|' |

�%'✓ =
�%✓
#✓

%A428B8>=✓ =
)%✓

)%✓ + �%✓

(16)

Note that )%'A = '420;;A . Moreover, for the recall computation,
we incorporate the idea of Existence Reward [32], which is the
ratio of the number of detected subsequence outliers to the total
number of subsequence outliers. However, consistent with their
work [32], we do not include the Existence ratio in the de�nition of
range-precision. We can then compute R-AUC-ROC and R-AUC-PR
using Equation 10 and Equation 11.
Relation between Range-ROC and Range-PR: PR curve is a
supplement to the ROC curve. In a highly unbalanced dataset, be-
cause the number of positive points is too small, at the same level
of FPR, it is easy to have a high TPR (or)%'✓ ) at the cost of low pre-
cision. There are deep connections between ROC and PR [11]. First,
ROC and PR have one-to-one mapping for a given dataset because
the confusion matrix is uniquely determined given TPR and FPR.
This relation is broken for the range method because we include
an extra Existence factor for range-TPR. Therefore, the confusion
matrix cannot be decided in the range-ROC space. Secondly, for
a point-based version, if one ROC curve dominates another ROC
curve, its corresponding PR curve would also dominate another
one. Here, dominate means the curve is always higher or equal to
another one. Because of the Existence factor, this rule is also lifted
for the range de�nition. This is true only if both of the methods



have the same existence ratio. However, this is not always guaran-
teed. Finally, a maximized AUC does not necessarily correspond to
a maximized AP. This holds for the range de�nition. For a robust
evaluation, both measures should be used.

4.2 VUS: Volume Under the Surface
Our range-AUC family of measures choose the width of the bu�er
region to be half of a subsequence length ✓ of the time series. Such
bu�er length can be either set based on the knowledge of an expert
(e.g., the usual size of arrhythmia in an electrocardiogram) or set
automatically using the time series’s period (which can easily be
computed using either techniques based on cross-correlation or the
Fourier transform). Since the period is an intrinsic property of the
time series, we can compare various algorithms on the same basis.
However, a di�erent approach may get a slightly di�erent period.
In addition, there are multi-period time series. So other groups may
get di�erent range-AUC because of the di�erence in the period.
As a matter of fact, the parameter ✓ , if not well set, can strongly
in�uence range-AUC measures. To eliminate this in�uence, we
introduce two generalizations of range-AUC family of measures.

The solution is to compute ROC and PR curves for di�erent bu�er
lengths from 0 to the ✓ as shown in Figure 3(d). Therefore, the ROC
and the PR curves become a surface in a three-dimensional space.
Then, the overall accuracy measure corresponds to the Volume
Under the Surface (VUS) for either the ROC surface (VUS-ROC)
or PR surface (VUS-PR). As the R-AUC-ROC and R-AUC-PR are
anomaly score threshold-independent measures, the VUS-ROC and
VUS-PR are independent to both the threshold and bu�er length.
Formally, given )⌘ = [)⌘0,)⌘1, ...)⌘# ] with 0 = )⌘0 < )⌘1 <
... < )⌘# = 1, andL = [✓0, ✓1, ..., ✓!] with 0 = ✓0 < ✓1 < ... < ✓! = ✓ ,
we de�ne VUS-ROC as:

+*(-'$⇠ =
1
4

!’
F=1

#’
:=1

�(:,F) ⇤ �F

with:

8>>>>><
>>>>>:

�(:,F) = �:
)%'✓F

⇤ �:
�%'✓F

+ �:
)%'✓F�1

⇤ �:
�%'✓F�1

�:
�%'✓F

= �%'✓F ()⌘: ) � �%'✓F ()⌘:�1)
�:
)%'✓F

= )%'✓F ()⌘:�1) +)%'✓F ()⌘: )
�F = |✓F � ✓F�1 |

(17)

Similarly, We can compute VUS-PR as follows:

+*(-%' =
1
4

!’
F=1

#’
:=1

�(:,F) ⇤ �F

with:

8>>>>><
>>>>>:

�(:,F) = �:
%A✓F

⇤ �:
'4✓F

+ �:
%A✓F�1

⇤ �:
'4✓F�1

�:
'4✓F

= '420;;✓F ()⌘: ) � '420;;✓F ()⌘:�1)
�:
%A✓F

= %A428B8>=✓F ()⌘:�1) + %A428B8>=✓F ()⌘: )
�F = |✓F � ✓F�1 |

(18)

From the above equations, we observe that the computation
of VUS measures requires $ (# ⇤ !). In comparison, range-AUC
measures require$ (# ). Thus, the application of VUS versus range-
AUC depends on our knowledge of which bu�er length to set. If
one user knows which would be the most appropriate bu�er length,
range-AUC-based measures are preferable compared to VUS-based
measures. However, if there exists an uncertainty on ✓ , then setting
a range and using VUS increases the �exibility of the usage and the
robustness of the evaluation. Finally, more parameters than ✓ can be
included in VUS-based measures. If, in addition to ✓ , there is a need
to de�ne a range for an other parameter (such as the normal model
length ✓#" of NormA), the two dimensional surface is transformed
into a three dimensional hyper-surface. In general, for % parameters,
the value is the volume under a |% | � 1 hyper-surface.

Dataset Size Average
Length

Average #
Anomalies

Average #
Abnormal
Points

Average
Abnormal
Density %

Dodgers [17] 1 50400.0 133.0 5612.0 11.14
ECG [15] 52 230351.9 195.6 15634.0 6.8
IOPS [1] 58 102119.2 46.5 2312.3 2.1

KDD21 [18] 250 77415.06 1 196.5 0.56
MGAB [33] 10 100000.0 10.0 200.0 0.20

NAB [3] 58 6301.7 2.0 575.5 8.8
NASA-MSL [6] 27 2730.7 1.33 286.3 11.97

NASA-SMAP [6] 54 8066.0 1.26 1032.4 12.39
SensorScope [36] 23 27038.4 11.2 6110.4 22.5

YAHOO [19] 367 1561.2 5.9 10.7 0.70

Table 2: Summary characteristics of the public datasets of TSB-UAD.

This �exibility of VUS measures in evaluating methods while
varying parameters of choice may have profound implications be-
yond time-series AD. For example, VUS measures are applicable
across binary classi�cation tasks for evaluating methods with a
single quality value while considering di�erent parameter choices.
Similarly, the integration of VUS measures into the objective func-
tions of machine learning methods may result in substantially more
robust models. Interestingly, our current formulation enables easy
integration of weights (summing to 1) in case there are auxiliary
information about the importance of anomalies (or class labels).
Consider for example the case where the downstream task is con-
cerned with time-series forecasting. An anomaly in the beginning
of the time series is less likely to in�uence the forecasting abil-
ity. However, an anomaly near the forecasted period may have
signi�cant impact to the forecasting model. Therefore, penalizing
di�erently the positions of anomalies may be required. We plan to
study such variants and generalizations of VUS in future works.

5 EXPERIMENTAL ANALYSIS
We now describe in detail our experimental analysis. The experi-
mental section is organized as follows:
(1) In Section 5.1, we �rst start by introducing the datasets and the

methods to evaluate the previously de�ned accuracy measures.
(2) In Section 5.2, we illustrate the limitations of existing measures

with some selected qualitative examples.
(3) In Section 5.3, we continue by measuring quantitatively the ben-

e�ts that our proposed measures bring in terms of robustness
to lag, noise, and normality/abnormality ratio. We then evalu-
ate the separability degree of accurate and inaccurate methods
using the existing and our proposed approaches.

(4) In Section 5.4, we �nally conduct an evaluation of the accuracy
measures in which we analyse the variation of ranks that a AD
method can have with regards to the accuracy measures used.

5.1 Experimental Setup and Settings
We implemented the experimental scripts in Python 3.8 with the
following main dependencies: sklearn 0.23.0, tensor�ow 2.3.0, pan-
das 1.2.5, and networkx 2.6.3. In addition, we used implementations
from our TSB-UAD benchmark suite: www.timeseries.org/TSB-
UAD. For reproducibility purposes, we make all our datasets, codes,
and scripts publicly available.1
Datasets: For our evaluation purposes, we use the public datasets
identi�ed in our TSB-UAD benchmark. The latter corresponds to 10
datasets proposed in the past decades in the literature containing
900 time series with labeled anomalies. Speci�cally, each point in
1http://chaos.cs.uchicago.edu/tsb-uad/VUS.zip



OCSVM

AE

MBA(820)

Precision@k
Precision

Recall F Rprecision
Rrecall RF AUC−PR

AUC−ROC
R−AUC−PR

R−AUC−ROC
VUS−ROC

VUS−PR

(f) AE accuracy (in green)/OCSVM accuracy (in red)

(a
.1)

 O
CS

VM
 sc

or
e

(a
.2)

 A
E 

sc
or

e

(b) AUC-ROC (blue)
R-AUC-ROC (orange)

(c) AUC-PR (blue)
R-AUC-PR (orange) (d) VUS-ROC (e) VUS-PR

FPR/ FPRℓ

TP
R/
TP
R ℓ

Pre
cis
ion

/P
rec
isi
on

ℓ

Recall/Recallℓ
FPR

TP
R

ℓ

Recall

Pr
ec

isi
on

ℓ

FPR/ FPRℓ

TP
R/
TP
R ℓ

Pre
cis
ion

/P
rec
isi
on

ℓ

Recall/Recallℓ
FPR

TP
R

ℓ

Recall

Pr
ec

isi
on

ℓ

(a
.1)

 O
CS

VM
 sc

or
e

(a
.2)

 L
O

F 
sc

or
e

(b) AUC-ROC (blue)
R-AUC-ROC (orange)

(c) AUC-PR (blue)
R-AUC-PR (orange) (d) VUS-ROC (e) VUS-PR

FPR/ FPRℓ

TP
R/
TP
R ℓ

Pre
cis
ion

/P
rec
isi
on

ℓ

Recall/Recallℓ
FPR

TP
R

ℓ Recall

Pr
ec

isi
on

ℓ

FPR/ FPRℓ

TP
R/
TP
R ℓ

Pre
cis
ion

/P
rec
isi
on

ℓ

Recall/Recallℓ
FPR

TP
R

ℓ Recall

Pr
ec

isi
on

ℓ

OCSVM

LOF

MBA(806)
(f) LOF accuracy (in green)/OCSVM accuracy (in red)

(A) Noise and Lag issue:  Example on MBA(805)

(B) Lag issue:  Example on MBA(806)

Precision@k
Precision

Recall F Rprecision
Rrecall RF AUC−PR

AUC−ROC
R−AUC−PR

R−AUC−ROC
VUS−ROC

VUS−PR

Figure 4: Comparison of evaluation measures (only our proposed measures are illustrated in subplots (b,c,d,e) but all others are summarized in
subplots (f)) on two examples ((A)AE and OCSM applied on MBA(805) and (B) LOF and OCSVM applied on MBA(806)) illustrating the limitation
when the anomaly score is either noisy or lagged with human labels.

every time series is labeled as normal or abnormal. Table 2 summa-
rizes relevant characteristics of the datasets, including their size,
length, and statistics about the anomalies. In more detail:
• ECG [15] is a standard electrocardiogram dataset and the anom-

alies represent ventricular premature contractions. Long series
MBA(14046) is split to 47 series.

• IOPS [1] is a dataset with performance indicators that re�ect
the scale, quality of web services, and health status of a machine.

• KDD21 [18] is a composite dataset released in a recent SIGKDD
2021 competition with 250 time series.

• MGAB [33] is composed of Mackey-Glass time series with
non-trivial anomalies. Mackey-Glass data series exhibit chaotic
behavior that is di�cult for the human eye to distinguish.

• NAB [3] is composed of labeled real-world and arti�cial time
series including AWS server metrics, online advertisement click-
ing rates, real time tra�c data, and a collection of Twitter men-
tions of large publicly-traded companies.

• NASA-SMAP and NASA-MSL [6] are two real spacecraft
telemetry data with anomalies from Soil Moisture Active Pas-
sive (SMAP) satellite and Curiosity Rover on Mars (MSL).

• SensorScope [36] is a collection of environmental data, such
as temperature, humidity, and solar radiation, collected from a
typical tiered sensor measurement system.

• Yahoo [19] is a dataset published by Yahoo labs consisting
of real and synthetic time series based on the real production
tra�c to some of the Yahoo production systems.

Anomaly Detection Methods: For the experimental evaluation,
we consider the following AD baselines.
• Isolation Forest (IForest) [22] constructs binary trees based

on random space splitting. The nodes (subsequences in our
speci�c case) with shorter path lengths to the root (averaged
over every random tree) are more likely to be anomalies.

• The Local Outlier Factor (LOF) [10] computes the ratio of
the neighboring density to the local density.

• Matrix Pro�le (MP) [38] detects as anomaly the subsequence
with the most signi�cant 1-NN distance.



• NormA [8] identi�es the normal patterns based on clustering
and calculates each point’s e�ective distance to the normal
patterns weighted using statistical criteria of these patterns.

• Principal Component Analysis (PCA) [2] projects data to a
lower-dimensional hyperplane, and data points with a signi�-
cant distance from this plane can be identi�ed as outliers.

• Autoencoder (AE) [29] projects data to the lower-dimensional
latent space and reconstructs the data, and outliers are expected
to have more evident reconstruction deviation.

• LSTM-AD [23] use an LSTM network that from the current
subsequence tries to predict the following value. The error
prediction is then used to identify anomalies.

• Polynomial Approximation (POLY) [20] �ts a polynomial
model that tries to predict the values of the data series from the
previous subsequences. The outliers are detected by measuring
the prediction error.

• CNN [24] build, using a convolutional-based deep neural net-
work, a correlation between current and previous subsequences,
and the outliers are detected by the deviation between the pre-
diction and the actual value.

• One-class Support Vector Machines (OCSVM) [30] is a sup-
port vector method that �ts the normal training dataset and
�nds the normal data’s boundary.

5.2 Qualitative Analysis
We �rst evaluate qualitatively the di�erent accuracy evaluation
measures. We pick two examples that illustrate well the motivation
and the limitation to lag and noise. These two examples are depicted
in Figure 4. The �rst example in Figure 4(A) corresponds to the
application of OCSVM and AE on the MBA(805) dataset.

We observe in Figure 4(A)(a.1) and (a.2) that both scores identify
most of the anomalies (highlighted in red). However, the OCSVM
score points to more false positives (at the end of the time series)
and only captures small sections of the anomalies. On the con-
trary, the AE score points to fewer false positives and captures all
abnormal subsequences. Thus we can conclude that, visually, AE
should obtain a better accuracy score than OCSVM. Nevertheless,
we also observe that the AE score is lagged with the labels and
contains more noise. The latter has a signi�cant impact on the
accuracy of evaluation measures. First, Figure 4(A)(c) is showing
that AUC-PR is better for OCSM (0.73) than for AE (0.57). This is
contradictory with what is visually observed from Figure 4(A)(a.1)
and (a.2). However, when using our proposed measure R-AUC-PR,
OCSVM obtains a lower score (0.83) than AE (0.89). This con�rms
that a bu�er region before the labels helps to capture the true value
of an anomaly score. Overall, Figure 4(A)(f) is showing in green and
red the evolution of accuracy score for the 13 accuracy measures
for AE and OCSVM, respectively. The latter shows that, in addition
to Precision@k and Precision, our proposed approach captures the
quality order between the two methods well.

We now present a second example illustrated in Figure 4(B). In
this case, we demonstrate the anomaly score of OCSVM and LOF
(depicted in Figure 4(B)(a.1) and (a.2)) applied on the MBA(806)
dataset. In this case, we observe that both methods produce the
same level of noise. However, LOF points to fewer false positives and
captures more sections of the abnormal subsequences than OCSVM.
Nevertheless, the LOF score is slightly lagged with the labels such
that the maximum values in the LOF score are slightly outside of the
labeled sections. Thus, as illustrated in Figure 4(B)(f), even though

(a) Overall Averaged standard deviation (for MBA(805) electrocardiogram) 
with different lags.
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(b) Averaged standard deviation for different anomaly scores (computed on 
MBA(805) electrocardiogram) with different lags.
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(b) Averaged standard deviation for different anomaly scores (computed on 
MBA(805) electrocardiogram) with different lags.

Figure 5: For each methods, we compute 10 times the accuracy mea-
sures with random lag ✓ 2 [�0.25 ⇤ ✓, 0.25 ⇤ ✓ ] injected in the anomaly
score. We center the accuracy average to 0.

we can visually consider that LOF is performing better than OCSM,
all usual measures (Precision, Recall, F, precision@k, and AUC-PR)
are judging OCSM better than AE. On the contrary, measures that
consider lag (Rprecision, Rrecall, RF) rank the methods correctly.
However, due to threshold issues, these measures are very close
for the two methods. Overall, only AUC-ROC and our proposed
measures are giving a higher score for LOF than for OCSVM.

5.3 Quantitative Analysis
Until now, we illustrated with speci�c examples several of the limi-
tations of current measures. Due to space restrictions, we omit such
examples and, instead, we evaluate statistically and quantitatively
the robustness and validity of our proposed measures versus cur-
rently used measures. We �rst evaluate the robustness to noise, lag,
and normal versus abnormal points ratio. We then measure their
ability to separate accurate and inaccurate methods.
Sensitivity Analysis: We �rst analyze the sensitivity of di�erent
approaches quantitatively to di�erent factors: (i) lag, (ii) noise, and
(iii) normal/abnormal ratio. As already mentioned, these factors are
realistic. For instance, lag can be either introduced by the anomaly
detection methods (such as methods that produce a score per subse-
quences are only high at the beginning of abnormal subsequences)
or by human labeling approximation. Furthermore, even though
lag and noises are injected, an optimal evaluation metric should
not vary signi�cantly. Therefore, we aim to measure the variance
of the di�erent evaluation measures when we vary the lag, noise,
and the normal/abnormal ratio. Thus, we proceed as follows:

(1) For each anomaly detection method, we �rst compute the
anomaly score on a given time series.
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Figure 6: Sensitivity Analysis: Over the entire benchmark, average
standard deviation of the accuracy values of the measures under
varying (a.1) lag, (a.2) noise, (a.3) normal/abnormal ratio. Sensitivity
Analysis for (f) NASA-MSL, (g) KDD21 and (h) NASA-SMAP

(2) We then inject either lag ; , noise = or change the nor-
mal/abnormal ratio A . For 10 di�erent values of ; 2 [�0.25 ⇤
✓, 0.25 ⇤ ✓], = 2 [�0.05 ⇤ (<0G (() ) � <8=(() )), 0.05 ⇤
(<0G (() ) � <8=(() ))] and A 2 [0.01, 0.2], we compute
the 13 di�erent evaluation measures.

(3) For each evaluation measure, we compute the standard
deviation of the ten di�erent values. Figure 5(b) box plots
depict the di�erent lag values for six AD methods applied
on the MBA(805) data series in the ECG dataset.

(4) We compute the average standard deviation for the 13 dif-
ferent AD quality measures. For example, �gure 5(a) depicts
the average standard deviation for ten di�erent lag values
over the AD methods applied on the MBA(805) time series.

(5) We compute the average standard deviation for the ev-
ery time series in each dataset (as illustrated in Fig-
ure 6(b,c,d) for three datasets of the benchmark. The re-
sults for all datasets of the benchmark are depicted in Fig-
ure 12(b,c,d,e,f,g,h,i,j) in the appendix, which we include in
the zip �le along with the codes and scripts).

(6) We compute the average standard deviation for the every
dataset (as illustrated in Figure 6(a.1) for lag, Figure 6(a.2)
for noise and Figure 6(a.3) for normal/abnormal ratio).

(7) We �nally compute the Wilcoxon signed-rank test [35] and
display the critical diagram over the average standard de-
viation for every data series (as illustrated in Figure 8(a.1)
for lag, Figure 8(a.2) for noise and Figure 8(a.3) for nor-
mal/abnormal ratio).

Robust
High separability 

Robust
Low separability 

Non-Robust
High separability 

Non-Robust
Low separability 

be
tte

r
w

or
se

better worse

VUS_ROC

VUS_PR

RANGE_AUC_PR
RANGE_AUC_ROC

AUC_ROC

AUC_PR

F

RF
Precision@k

Recall
Precision

Rprecision

Rrecall

be
tte

r
w
or
se

worsebetter

Robust
High separability 

Robust
Low separability 

Non-Robust
High separability 

Non-Robust
Low separability 

F

AUC_PR

RF

AUC_ROC

RANGE_AUC_PRVUS_PR

VUS_ROC

RANGE_AUC_ROC

Precision@k

Recall

Rrecall Rprecision

Precision

Figure 7: Evaluation of all measures based on: (y-axis) their separa-
bility (measured as the averaged z-test between the accuracy values
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noise, (scatter size) average standard deviation of the accuracy val-
ues when varying the normal/abnormal ratio.

The methods with the smallest standard deviation can be consid-
ered more robust to lag, noise, or normal/abnormal ratio from the
above framework. First, as stated in the introduction, we observe
that non-threshold-based measures (such as AUC-ROC and AUC-
PR) are indeed robust to noise (see Figure 6(a.2)), but not to lag.
Figure 8(a.1) demonstrates that our proposed measures VUS-ROC,
VUS-PR, R-AUC-ROC, and R-AUC-PR are signi�cantly more robust
to lag. Similarly, Figure 8(a.2) con�rms that our proposed measures
are signi�cantly more robust to noise. However, we observe that,
among our proposedmeasures, only VUS-ROC and R-AUC-ROC are
robust to the normal/abnormal ratio and not VUS-PR and R-AUC-
PR. This can be explained by the fact that Precision-based measure
varies signi�cantly when the ratio of positive versus negative labels
changes. This is con�rmed by Figure 6(a.3), in which we observe
that both Precision and Rprecision have a high standard deviation.
Overall, we observe that VUS-ROC is signi�cantly more robust to
lag, noise, and normal/abnormal ratio than other measures.
Separability Analysis: We now evaluate the separability capac-
ities of the di�erent evaluation metrics. We thus manually select
accurate and inaccurate anomaly detection methods and verify if
the accuracy evaluation scores are indeed higher for the accurate
than for the inaccurate methods. Figure 9 depicts the latter separa-
bility analysis applied on the MBA(805) dataset. The accurate and
inaccurate anomaly scores are plotted in green and red, respectively.
We then consider 12 di�erent pairs of accurate/inaccurate methods
among the eight previously mentioned anomaly scores. We slightly
modify each score 50 di�erent times in which we inject lag and
noises and compute the accuracy measures. Figure 9(a.4) is sepa-
rated into four di�erent subplots corresponding to 4 pairs (selected
among the twelve di�erent pairs due to lack of space). Each subplot
corresponds to two box plots per accuracy measure. The green
and red box plots correspond to the 50 accuracy measures on the
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Figure 8: Critical di�erence diagram computed using the signed-rank Wilkoxon test (with U = 0.1) for the sensitivity to (a.1) lag, (a.2) noise and
(a.3) normal/abnormal ratio.
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Figure 9: Separability analysis applied on 4 pairs of accurate (in
green) and inaccurate (in red) methods on MBA(805) data series.

accurate and inaccurate methods. If the red and green box plots are
well separated, we can conclude that the corresponding accuracy
measures are separating the accurate and inaccurate methods well.
We thus observe that some accuracy measures (such as VUS-ROC)
are more separable than others (such as RF). We thus measure the
separability of the two pox plot by computing the Z-test.

We now aggregate all the results and compute the average Z-
test for all pairs of accurate/inaccurate datasets (examples can be
found in Figure 9(a.2) for accurate and (a.3) for inaccurate anomaly
score). Next, we perform the same operation over three di�erent
data series: MBA (805), MBA(820), and SED. Then, we depict the
average Z-test for these three datasets in Figure 10(a). Finally, we
show the average Z-test for all datasets in Figure 10(b).

We observe that our proposed VUS-based and Range-based mea-
sures are signi�cantly more separable than other current accuracy
measures (up to two times for than AUC-ROC, the best measures of
all current ones). Furthermore, when analyzed in detail in Figure 9
and Figure 10, we con�rm that VUS-based and Range-based are
more separable over all three datasets.
Global Analysis: Overall, we observe that VUS-ROC appears to
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Figure 10: Overall separability analysis (averaged z-test between the
accuracy values distributions of accurate and inaccurate methods)
applied on 36 pairs on 3 datasets.

be the most robust (see Figure 8) and separable (see Figure 10) mea-
sures. On the contrary, Precision and Rprecision are non-robust and
non-separable. In order to visualize the global statistical analysis,
we merge the sensitivity and the separability analysis into one plot.
Figure 7 depicts one scatter point per accuracy measure. The x-axis
represents the averaged standard deviation to lag and noise (aver-
aged values from Figure 6(a.1) and (a.2)). The y-axis corresponds
to the averaged Z-test (averaged value from Figure 10). Finally, the
size of the points corresponds to the sensitivity to normal/abnormal
ratio (values from Figure 6(a.3)). Figure 7 demonstrates that our
proposed measures (that are at the top left section of the plot) are
both the most robust and separable. Among all current accuracy
measures, only AUC-ROC is on the top left section of the plot. Usual
measures such as F, RF, AUC-ROC, AUC-PR are on the bottom left
section of the plot. The latter underlines that these usual measures
are robust but non-separable. Nevertheless, we observe that VUS-
PR and Range-AUC-PR are sensitive to the normal/abnormal ratio,
even though separable and robust to lag and noise. This indicates
that these measures should be used with caution when applied to
unknown data series with very di�erent normal/abnormal ratios.
Overall, Figure 7 con�rms the interest and the superiority of our
proposed measures, especially for the VUS-ROC measure.

5.4 Accuracy Evaluation
In this section, we analyze the accuracy of the anomaly detection
methods provided by the 13 accuracy measures. The objective is to
observe the changes in the global ranking of the anomaly detection
methods. For that purpose, we formulate the following assumptions.
First, we assume that the data series in each benchmark dataset
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(a.2) Critical diagram computed using VUS-ROC
(4 pairs of methods with insignificant differences)
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Figure 11: Accuracy evaluation of the anomaly detection methods. Analysis of the (b.1) averaged rank and (b.2) averaged rank entropy for each
methods and each accuracy measures over the entire benchmark. Critical di�erence diagram computed using the signed-rank Wilkoxon test
(with U = 0.1) when using (a.1) AUC-ROC and (a.2) VUS-ROC.

are similar (i.e., from the same domain and sharing some common
characteristics). As a matter of fact, we can assume that an anomaly
detection method should perform similarly on these data series of
a given dataset. This is con�rmed when observing that the best
anomaly detectionmethods are not the same based onwhich dataset
was analyzed. Thus the ranking of the anomaly detection methods
should be di�erent for di�erent datasets but similar for every data
series in each dataset. Therefore, for a given method � and a given
dataset ⇡ containing data series of the same type and domain, we
assume that a good accuracy measure results in a low entropy for
the di�erent ranks for the method � across the dataset ⇡ .

We now compute the accuracy measures for the nine di�erent
methods (we compute the anomaly scores ten di�erent times, and
we use the average accuracy). Figure 11(c) reports the average rank-
ing of the anomaly detection methods obtained on two of the nine
datasets. The x-axis corresponds to the di�erent accuracy mea-
sures. We �rst observe that the rankings are more separated using
Range-AUC and VUSmeasures for these two datasets. Figure 11(b.1)
depicts the average ranking over the entire benchmark. The latter
con�rms the previous observation that VUS measures provide more
separated rankings than threshold-based and AUC-based measures.
We also observe an interesting ranking evolution for the YAHOO
dataset illustrated in Figure 11(c.2). We notice that both LOF and
MatrixPro�le (brown and pink curve) have a low rank (between
4 and 5) using threshold and AUC-based measures. However, we
observe that their ranks increase signi�cantly for range-based and
VUS-based measures (between 2.5 and 3). As we noticed by looking
at speci�c examples (see Figure 5.2), LOF and MatrixPro�le can
su�er from a lag issue even though the anomalies are well identi-
�ed. Therefore, the range-based and VUS-based measures better
evaluate these two methods’ detection capability.

Overall, we observe from the ranking curves that the ranks seem
more chaotic for threshold-based than AUC-based, Range-AUC-
based, and VUS-based measures. We now quantify it statistically.
For that matter, we compute the Shannon Entropy of the ranks of
each anomaly detection method. In practice, we extract the ranks

of methods across one dataset and compute Shannon’s Entropy of
the di�erent ranks. Figure 11(d) depicts the Entropy of each of the
nine methods for two out of 9 datasets. Figure 11(b.2) illustrates the
averaged Entropy for all datasets in the benchmark. We observe
that both for the general case (Figure 11(b.2)) and some speci�c
cases (Figure 11(d)), the Entropy is reducing when using AUC-based,
Range-AUC based, and VUS-based measures. We report the lowest
Entropy for VUS-based measures. More signi�cantly, we notice
a signi�cant drop between threshold-based and AUC-based. This
con�rms that the ranks provided by AUC and VUS-based measures
are consistent for data series belonging to one speci�c dataset.

Therefore, based on the assumption formulated at the beginning
of the section, we can thus conclude that AUC, range-AUC, andVUS-
based measures are providing more consistent rankings. Finally, as
illustrated in Figure 11, we also observe that VUS-based measures
result in the most ordered and similar rankings for data series from
the same type and domain.

6 CONCLUSIONS
Time-series AD is a challenging problem, and an active area of re-
search. Given the multitude of solutions proposed in the literature,
it is important to be able to properly evaluate them. In this paper,
we demonstrate the limitations of threshold-based accuracy mea-
sures for the time-series AD methods. Even though, AUC-based
measures solve the threshold issues, we show that they cannot
handle lag and noise. Overall, we experimentally show that the
proposed VUS-based measures are more robust, and better separate
accurate methods from inaccurate ones.
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(a) Overall Averaged standard deviation (for MBA(805) electrocardiogram) 
with different noise.

(b) Averaged standard deviation for different anomaly scores (computed on 
MBA(805) electrocardiogram) with different noise.

(a) Overall Averaged standard deviation (for MBA(805) electrocardiogram) 
with different normal/abnormal ratio.

(b) Averaged standard deviation for different anomaly scores (computed on 
MBA(805) electrocardiogram) with different normal/abnormal ratio.

Figure 13: For each method, we compute 10 times the accuracy
measures with random noise (noise ratio = 2 [�0.05 ⇤ (<0G (() ) �
<8= (() )), 0.05⇤ (<0G (() )�<8= (() )) ]) injected in the anomaly score.
We center the accuracy average to 0.

(a) Overall Averaged standard deviation (for MBA(805) electrocardiogram) 
with different noise.

(b) Averaged standard deviation for different anomaly scores (computed on 
MBA(805) electrocardiogram) with different noise.

(a) Overall Averaged standard deviation (for MBA(805) electrocardiogram) 
with different normal/abnormal ratio.

(b) Averaged standard deviation for different anomaly scores (computed on 
MBA(805) electrocardiogram) with different normal/abnormal ratio.

Figure 14: For each method, we compute 10 times the accuracy mea-
sures when we vary the normal abnormal ratio (A 2 [0.01, 0.2]). We
center the accuracy average to 0.

(a.1) Averaged lag sensitivity (a.2) Averaged noise sensitivity (a.3) Averaged ratio sensitivity
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Figure 12: Sensitivity (lag, noise and normal/abnormal ratio) Analy-
sis per dataset.
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Separability Evaluation on SED dataset
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Separability Evaluation on MBA(805) dataset

D
at

a 
se

rie
s

V
isu

al
ly

 “
ac

cu
ra

te
”

an
om

al
y 

sc
or

e
V

isu
al

ly
 “i

na
cc

ur
at

e”
an

om
al

y 
sc

or
e

Separability Evaluation on MBA(820) dataset

Figure 15: Separability analysis applied on 12 pairs of accurate/inaccurate methods on MBA(805) data series.
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Separability Evaluation on MBA(805) dataset
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Separability Evaluation on MBA(820) dataset

Figure 16: Separability analysis applied on 12 pairs of accurate/inaccurate methods on MBA(820) data series.
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Separability Evaluation on MBA(805) dataset
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Separability Evaluation on MBA(820) dataset

Figure 17: Separability analysis applied on 12 pairs of accurate/inaccurate methods on SED data series.
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Figure 18: Anomaly detection rank and Entropy for these ranks for nine datasets of the benchmark.


