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Abstract

We present FreSh, the first lock-free (thus, highly fault-tolerant) data series index that,
surprisingly, exhibits the same performance as the state-of-the-art lock-based in-memory
indexes. For developing FreSh, we studied in depth the design decisions of current state-
of-the-art data series indexes, and the principles governing their performance. We distilled
the knowledge we obtained to come up with a theoretical framework which enables the
development and analysis of data series indexes in a modular way. After introducing the
concept of locality-awareness, we proposed Refresh, a generic approach for supporting lock-
freedom in a highly efficient way on top of any locality-aware data series algorithm. We built
FreSh by repeatedly applying Refresh to make its different stages lock-free. Experiments,
using several synthetic and real datasets, illustrate that FreSh, albeit lock-free, achieves
performance that is as good as that of the state-of-the-art blocking in-memory data series
index.

1 Introduction

Processing big collections of data series is of paramount importance for a wide spectrum of appli-
cations [41, 4, 43]. In the heart of analyzing such collections lies the process of similarity search.
Given a query series Q, similarity search returns a set of data series from the collection that
have the closest distance to Q. Similarity search comes at considerable cost, mainly due to two
factors: (i) the increasing size of data series collections, and (ii) the high dimensionality of the
data series produced by modern applications. To address these challenges, current state-of-the-
art data series indexes [12, 7, 56, 44, 46, 45, 47, 48, 10], are based on data series summarization.
They develop a tree index containing data series summaries, which they then use to prune data
series of the collection in order to restrict the execution of costly computations only to a small
subset of the original data series. This results in significantly enhanced performance in most
cases [12, 13]. Moreover, recent work in designing highly-efficient indexes [44, 46, 45, 47, 48]
has focused on exploiting the parallelism supported by modern multicore machines.

Naturally, the use of parallel (and/or distributed) components in designing data series in-
dexes increases the need for fault-tolerance. The complexity and interdependence of such so-
lutions may result in failures, usually observed at the software level, but sometimes also in
hardware. When a failure occurs, it is crucial for the system, in terms of both reliability and
performance, to continue its operation and produce valid outcomes. Unfortunately, the state-
of-the-art data series indexes [12, 42, 44, 45, 47, 48] are largely lock-based in order to achieve
synchronization in multi-threaded settings. Using locks results in blocking implementations,
which are not fault-tolerant: if a thread that holds a lock fails, the entire system may block.
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Lock-free algorithms avoid the use of locks to ensure fault-tolerance and enhance parallelism.
Lock-freedom [35] is a widely-studied property when designing concurrent trees [16, 14, 28, 3]
and other data structures [32, 35, 27]. It ensures that the system, as a whole, will continue
to make progress, even if processes crash asynchronously. Lock-free solutions could, thus, be
a promising approach for efficiently supporting fault-tolerance. Designing lock-free data series
indexes is the focus of this work.
Challenges. To achieve lock-freedom, some form of helping is usually employed. That is,
appropriate mechanisms are provided to make threads aware of the work that other threads
perform, so that a thread may help others to complete their work whenever needed (e.g., when
they crash, or are very slow). Unfortunately, conventional helping mechanisms are rather ex-
pensive and introduce high overheads [32, 35, 37, 57]. For this reason, the vast majority of
the software stack is still based on locks. Ensuring lock-freedom without sacrificing the good
performance of existing data series indexes is a major challenge.

State-of-the-art data series indexes are designed to maintain some form of data locality,
and avoid synchronization as much as possible. For instance, they often separate the data
into disjoint sets, and have a distinct thread manipulate the data of each set [46, 47, 48].
This processing pattern enables threads to work in parallel and independently from each other,
which results in reduced synchronization and communication costs. These properties (which
are crucial for performance) can be easily achieved when locks are employed. However, the way
helping works seems to be inherently incompatible. them. It is thus unclear how to implement
helping on top of such indexes without sacrificing these properties. Providing lock-freedom
while maintaining load-balancing among threads, and ensuring a good data pruning degree are
further challenges that need to be addressed.

State-of-the-art data series indexes encompass several data processing phases, which often
employ different data structures to accomplish their processing in an efficient way. Designing
lock-based versions of these data structures is possible. However, coming up with lock-free
versions of them, while also respecting the reduced communication and synchronization cost
principles that govern existing indexes, is another major challenge to address.

We observe that in order to develop a generalized approach for supporting lock-freedom on
top of data series indexes in a systematic way, we need to study and understand the design
decisions of current state-of-the-art indexes and the performance principles that govern them.
Then, we need appropriate abstractions for the data series processing stages and their properties,
as well as a set of design principles that need to be respected for efficiency. This is an ambitious
task that generates additional challenges.
Our approach. We propose FreSh, a novel lock-free data-series index, that efficiently addresses
all of the above challenges. To the best of our knowledge, FreSh is the first lock-free data series
index proposed in the literature, and thus, the only one that is fault-tolerant. Our experimental
analysis shows that the performance of FreSh is as good as that of MESSI [47], the state-of-the-
art concurrent data-series index. Moreover, in many cases, FreSh performs better than MESSI,
as it allows for increased parallelism when constructing the tree index. (FreSh and MESSI are
in-memory indexes.)

To come up with FreSh, we developed a generic approach, called Refresh, which can be
applied on top of a family of state-of-the-art blocking indexes to provide lock-freedom without
introducing any additional cost (in comparison to the blocking versions). Refreshintroduces the
concept of locality-aware lock-freedom which encompasses the properties of data locality, high
parallelism, low synchronization cost, and load balancing met in the designs of many existing
parallel data series indexes. None of the conventional lock-free techniques we are aware of has
been designed with the goal of respecting these properties. Indeed, our experiments show that
applying such conventional techniques for achieving lock-freedom results in significantly lower
performance that using our technique.

Refresh respects the workload and data separation of the underlying data series index,
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in order to not hurt the degrees of parallelism and load balancing of the index. Moreover,
it provides a mechanism for threads to determine whether a specific part of a workload has
been processed, and help only whenever it is necessary (i.e., threads that have crashed, or are
really slow). Refresh introduces two modes of execution for each thread: (i) expeditive and (ii)
standard. A thread that executes on the standard mode may incur synchronization overhead, as
it needs to synchronize with helper threads, whereas a thread that executes on the expeditive
mode executes a code that avoids all synchronizations. A thread starts by processing its assigned
workload on expeditive mode. Helping is performed only after a thread has finished processing
its own workload. Then, threads have to synchronize to execute on standard mode. This way,
Refresh maintains the synchronization and communication costs as low as that of the underlying
index.

Refresh can be applied on top of any locality-aware algorithm (Section 4) to get a lock-free
version of it. FreSh (Section 5) follows the design decisions of locality-aware iSAX-based in-
dexes [42]. However, to develop FreSh, we had to replace all data structures of the original index
(i.e., MESSI [47]) with corresponding locality-aware lock-free versions. We present implementa-
tions of several concurrent data structures, such as counters, binary trees, and priority queues
(Section 5). The novelty of these implementations is mainly their support for the expeditive
and standard execution modes. Some of them also provide enhanced parallelism compared to
employing existing concurrent data structures. We believe that these implementations, as well
as Refresh, are of independent interest, and could be employed to get highly-efficient lock-free
versions of several other big data processing solutions.

To be able to apply Refresh in a systematic way throughout all processing stages of an
iSAX-based index, we introduce the abstraction of a traverse object (Section 3). The traverse
object is an abstract data type that enables the design of an iSAX-based index in a modular
way. It abstracts the main processing pattern used during the operation of iSAX-based indexes
(and possibly also of other big-data processing solutions). Specifically, the iSAX-based index
can be implemented as a sequence of operations on traverse objects. This way, we provide a
generic methodology for designing iSAX-based indexes.
Contributions. Our contributions are summarized as follows:

• We develop a theoretical framework for designing, building and analyzing highly-efficient
data series indexes in a modular way, and for supporting lock-freedom in a systematic
way on top of them. Refresh is a generic approach that can be applied on top of any
locality-aware data series algorithm.

• Based on Refresh, we develop FreSh, the first lock-free, highly fault-tolerant, and very
efficient data series index.

• Our experiments, with large synthetic and real datasets, demonstrate that FreSh performs
as good as the state-of-the-art blocking index, thus, paying no penalty for providing fault-
tolerance.

2 Preliminaries and Related Work

Data Series, Indexing, and Similarity Search. A data series (DS) of size (or dimension-
ality) n is a sequence of n pairs, each consisting of a real value and its dimension. The Picewise
Aggregate Approximation (PAA) [38] of a data series is a vector of w components which are cal-
culated by spliting the x-axis into w equal segments, and by taking the mean values of the points
of the data series that each segment contains (Figure 1). To calculate the iSAX summary [51]
of the data series, the y axis is partitioned into a number of regions and a bit representation
is introduced for each region. The iSAX summary is a vector of w components, each of which
is a binary number representing the region in which the corresponding component of the data
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Figure 1: From data series to iSAX index

series PAA resides. The number of bits can be different for each region, and this enables the
creation of a hierarchical tree index (iSAX-based tree index [42]), as shown in Figure 1.

We focus on exact similarity search (a.k.a. exact 1-NN) which returns a single data series
from a collection, which is the most similar to a query data series. Similarity is measured based
on Euclidean Distance (ED), but our techniques are general enough to work for other popular
similarity measures, such as Dynamic Time Warping (DTW) [49]. We call the distance between
the iSAX summaries of two data series lower-bound distance. The lower bound distance between
two data series is always smaller than or equal to their euclidean distance, which we call real
distance. This property, called the pruning property, enables pruning of data series during query
answering. Specifically, a data series can be pruned whenever its lower bound distance from the
query series Q is higher than the real distance of any data series in the collection from Q.
Leaf-Oriented Trees. In a leaf-oriented tree, all data are stored in the leaves, which may
store up to M keys each. During an insertion, if the appropriate leaf ` has room, the new key is
placed in `. Otherwise, ` is split: it is replaced by a subtree consisting of an internal node and
two leaves. The keys of ` are distributed to the new leaves. If one of the newly created leaves
is empty, the splitting process is repeated.
iSAX-Based Indexing. Concurrent iSAX-based data series indexes [44, 46, 45, 47, 48] (or
iSAX-based indexes for short) work in two phases. During the tree index construction phase
(1st phase), a set of worker threads work on a collection of input data series (called raw data),
calculate an iSAX summary for each one of them, and build a tree index containing pairs of
iSAX summaries and pointers to the corresponding data series. In an iSAX-based index, these
pairs are first stored into a set of array buffers, called summarization buffers (buffers creation
stage). Then, the worker threads traverse these buffers and insert their entries in a leaf-oriented
tree (tree population stage). The use of buffers is employed to achieve high parallelism, a good
degree of locality, and low synchronization overhead in building the index tree. Data series that
have similar summarizations are placed into the same buffer and later in the same root subtree
of the index tree.

Given a query data series Q, the following actions occur during query answering. A thread
calculates the iSAX summary of Q and uses it to traverse a path of the tree, reaching a leaf `.
Then, the thread calculates the real distance between Q and each of the data series of `, and
stores the smallest distance among them in a variable called BSF. This distance will serve as
an initial approximate query answer. Query answering proceeds in two stages. A set of query
answering threads traverse the tree and use BSF to select those data series that are potential
candidate series for being the final answer to Q (pruning phase). Those nodes whose lower
bound distance to Q is larger than BSF are pruned. The candidate series are often stored in
(one or more) priority queues [46, 47, 48]. Multiple threads process the elements of the priority
queues by calculating their real distances from Q (refinement stage), and updating the BSF
each time a new minimum is met. At the end of the query answering phase, the final answer
is contained in BSF. Barriers among threads are often used at the end of each stage to ensure
correctness.
System. We consider a system of N threads which are executed asynchronously and may
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fail by crashing. When a thread crashes, it stops executing its algorithm and never recovers.
An algorithm is blocking is a thread has to wait for actions by other threads before it makes
progress. Lock-freedom guarantees that the system as a whole continues to make progress, even
if all but one thread crash.

2.1 Additional Related Work

Answering a similarity query using an index typically involves two steps: a filtering step where
the pre-built index on data series summaries is used to prune candidates, and a refinement
step where the surviving candidates are compared to the query in the original high-dimensional
space. Following this design, several tree-based techniques for efficient and scalable data series
similarity search have been proposed in the literature [12, 13, 11]. Out of those, the iSAX-
based indexes [42] have proven to be very competitive in terms of both index building and
query answering time performance [12, 13]. This family of indexes also includes parallel and
distributed solutions for similarity search that are in a much better position than traditional
single-node techniques to address the scalability challenges of modern data series analytics
applications that have to deal with very large data collections. These methods support both
exact and approximate similarity search query answering, and make use of modern hardware
(e.g., SIMD, multi-core, multi-socket, GPU), such as ParIS+ [46], MESSI [47], and SING [48],
as well as distributed computation (e.g., Spark) such as DPiSAX [59, 60]. Other distributed
solutions include TARDIS [61] and L-match [29], which, nevertheless, solve slightly different
problems, i.e., exact-match (determine whether the query series appear exactly the same in the
dataset) and subsequence matching (determine the most similar match between a short query
series and a subsequence of a long series), respectively.

The first lock-free implementation of a concurrent search tree appears in [16]. We use
the main ideas from this paper to come up with a baseline algorithm, which we discuss and
experimentally compare with FreSh in Section 6. Many other non-blocking concurrent search
trees have appeared in the literature (e.g., [6, 34, 2, 36, 40, 9, 5, 14, 28, 3]; this list is by no means
exhaustive). The novelty of the tree implementation we present in Section 5 is that it allows
multiple insert operations to concurrently update (in a lock-free way) the array that stores the
data in a (fat) leaf. Additionally, it supports the expeditive-standard mode of execution. These
innovations result in enhanced parallelism and excellent performance. Our algorithm is designed
to only provide the functionality needed to implement traverse objects. The implementations
above support different functionalities, have different goals or have been designed for other
settings.

Concurrent priority queues appear in [1, 50, 58, 53, 54, 39]. Some of them are blocking,
whereas others provide relaxed semantics. None of them is based on sorted arrays, and none
provides support for different modes of execution. In the baseline lock-free implementations
we developed, we use the skip-list based lock-free priority queue proposed in [39], which has
been shown to have good performance. Our experiments show that the scheme of priority
queues we propose and use in FreSh to implement the refinement stage, outperforms by far this
implementation (Section 6).

Universal constructions [20, 21, 22, 23, 19, 24, 25, 15, 26] can be used to provide wait-
free or non-blocking concurrent versions of any sequential data structure. However, because
of their generality, they are usually less efficient than implementations tailor-made for specific
sequential data structures. The algorithms in [20, 22, 26] are highly efficient for implementing
shared objects of small size (such as stacks and queues), but they are not appropriate for our
purpose.

The idea of transforming an algorithm to get an implementation that ensures a different
progress guarantee is not new. Examples of such transformations appear in [55, 30, 33]. Al-
though Refresh shares some high-level ideas with some of these algorithms, they have all been
introduced to solve different problems. The main technique proposed in Refresh departs from
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all these approaches.

3 Traverse Objects

In this section, we introduce the traverse object, an abstract data type, based on which we can
design an iSAX-based index in a modular way. Each of the last three stages of an iSAX-based
index processes data that are produced by the previous stage. The first stage processes the
original collection of data. This processing pattern has inspired the definition of a traverse
object.

Definition 1 Let U be a universe of elements. A traverse object S stores elements of U (not
necessarily distinct) and supports the following operations:

• Put(S , e, param), which adds an element e ∈ U in S; param is an optional argument that
allows an implementation to pass certain parameters in Put.

• Traverse(S , f , param, del), which traverses S and applies the function f on each of the
traversed elements. If the del flag is set, then each of the traversed elements is deleted
from S.

A traverse object satisfies the traversing property: Traverse applies f at least once on all
distinct elements that have been added in S and have not yet been deleted, by the time Traverse
is invoked.

To implement the four stages of an iSAX-based index, we require four instances of a traverse
object, one for each stage. We call BC , TP , PS , and RS , the traverse objects we employ to
implement the buffer creation, tree population, prunning, and refinement stages, respectively.
To get an iSAX-based index, these traverse objects should be implemented using different data
structures. The buffers creation phase uses an array RawData to store the raw data series,
thus, the elements of BC are stored in RawData. The tree population phase uses a set of arrays
(summarization buffers) where the pairs of iSAX summaries and pointers to data series are
initially stored. TP stores these pairs. The prunning stage employs a leaf-oriented tree to store
these pairs. Thus, PS also stores pairs but it organizes them into as many sets as the leaf nodes
of the tree. Each set contains the pairs stored in each leaf. Finally, the refinement stage uses
priority queues to store those tree leaves containing candidate series.

Answering a query using these traverse objects, is comprised of a sequence of four invo-
cations of Traverse on the different traverse objects. Figure 1 provides pseudocode for the
implementation of an iSAX-based index using traverse objects. Multithreaded processing is
hidden under the implementation of Put and Traverse.

The four stages of an iSAX-based index do not overlap with one another. This is usually
ensured with the use of synchronization barriers. In the scheme of Figure 1, the barriers, if
needed, should be incorporated in the implementation of Put and Traverse. Thus, an iSAX-
based index satisfies the following property.

Definition 2 (Non-Overlapping Property) In an iSAX-based index, Traverse is performed
only after the execution of all instances of Put that add distinct elements in S have been com-
pleted.

Assume that the non-overlapping property holds for BC , TP , PS , and RS and that RawData
initially stores all raw data series in the collection. The traversing property implies that the
BufferCreation function is invoked at least once for each data series ds in RawData, so
at least one appropriate pair is added for it in TP . Recall that TP is implemented using a
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set of summarization buffers. These and the semantics of Put imply that the summarization
buffers are populated appropriately. By the non-overlapping and the traversing properties,
TreePopulation is invoked for all these pairs. Since TreePopulation invokes Put on
PS , it follows that at least one pair for each of the data series of the collection is added in
PS (i.e. in the tree index). By the traversing property, all elements of PS are traversed
and Prunning is called on them. Thus, all tree leaves that cannot be pruned are added in
RS . Note that Traverse on RS is invoked with the del flag being True. This allows to
use (one or more) priority queues for implementing RS , and to employ DeleteMin to delete
each traversed element during Traverse. Refinement will be applied on every traversed
element of RS . Therefore, those leaves that cannot be pruned will be further processed by
calculating real distances and for the data series they store, and by updating BSF whenever
needed. Implementations for Put and Traverse for BC, TP , PS, and RS in FreSh are
presented in Section 5.

4 Locality-Aware Lock-Freedom

Locality-awareness aims at capturing a collection of design principles (Definition 3) for data se-
ries indexes which are crucial for achieving good performance. A locality-aware implementation
respects these principles. All iSAX-based indexes are locality-aware.

Definition 3 Principles for locality-aware processing:

1. Data Locality. Separate the data into disjoint sets and have a distinct thread processing
the data of each set. This results in reduced communication cost between the threads (i.e.,
reduced number of cache misses and branch misprediction).

2. High Parallelism & Low Synchronization Cost. Threads should work in parallel and
independently from each other as much as possible. Whenever synchronization cannot be
avoided, design mechanisms to minimize its cost.

3. Load Balancing. Share the workload equally to the different threads, thus avoiding load
imbalances between threads and having . all threads busy at each point in time.

In existing iSAX-based indexes, a thread operates on chunks of RawData and processes
disjoint sets of summarization buffers and subtrees of the index tree. Also, an iSAX-based
index employs several priority queues to store leaf nodes containing candidate series. Thus,
iSAX-based indexes are locality-aware. Enuring locality awareness results in good performance
and is thus a desirable property for big data processing. In what follows, we focus on a blocking
locality-aware implementation A, which splits its workload into disjoint parts and assigns them
to different threads for processing.

We are now ready to present Refresh. Refresh transforms A into a locality-aware implemen-
tation B that achieves high parallelism in a lock-free way. Pseudocode for Refresh is presented
in Algorithm 2. Let W be the workload to be processed by A and let w1, . . . , wk be the parts
it is separated to ensure locality awareness (line 1). Refresh applies the following steps:

(1) It attaches a flag variable di, 1 ≤ i ≤ k, (initially False) with each wi to identify whether
wi’s processing is done. As soon as a thread finishes processing wi, it sets di to True

(line 11).

(2) Threads in B execute the same algorithm as in A to acquire parts of W to process, until
all parts have been acquired (lines 5-11). The thread that has acquired a workload is its
owner.
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(3) To achieve lock-freedom, t then scans all the flag variables to find those parts that (al-
though acquired) are still unprocessed (line 12).

(4) Thread t helps by processing, one after the other, each part found unprocessed during
scan. For each part wi that t helps, it periodically checks di to determine whether other
threads completed the processing of wi. If this is so, t stops helping wi (line 16). If t
completes the processing of wi, it changes di to true (line 17).

(5) Due to helping, each data structure D, employed in A, may be concurrently accessed by
many threads. Thus, B should provide an efficient lock-free implementation for all data
structures employed in A.

In locality-aware implementations, threads are expected to work on their own parts of the
data most of the time (contention-free phase), and they may help other threads only for a
small period of time at the end of their execution (concurrent phase). In the contention-free
phase, Refresh avoids synchronization overheads incurred to ensure lock-freedom. Specifically,
it employs two implementations for each data strucutre D of A, one with low synchronization
cost that does not support helping (expeditive mode), and another that supports helping and has
higher synchronization overhead (standard mode). To enable threads operate on the appropriate
mode, a helping-indicator flag hi (initially False) is attached with each wi. A thread t starts
by processing its assigned workload on expeditive mode (lines 3 and 8-9). As soon as t starts
helping some part wi, it first sets hi to True (line 15), so that the owner thread of wi figures out
that it now has to run on standard mode (line 9), and then it processes wi on standard mode
(line 16).

To avoid helping whenever it is not absolutely necessary, Refresh provides an optional backoff
scheme that is used by every thread t (line 13) before it attempts to help other threads (line 14-
16). In some cases, the small delay before switching to standard mode, introduced by this
scheme, positively affects performance. To minimize the work performed by a helper, Refresh
could be applied recursively by splitting each part wi to subparts. This way, a helper thread
helps only the remaining unprocessed subparts of wi.

Lock-freedom is ensured due to the helping code (lines 12-17). In the absence of this code,
threads’ crashes could result in workloads that remain unprocessed. In Refresh, only after a
thread t processes a workload wi, it sets hi to True (lines 11 and 17). Moreover, each thread t
performs the helping code after finishing with their assigned workloads. Thus, when t completes
the execution of Refresh, the processing of all parts of the workload has been completed. This
implies that when a thread finishes executing Refresh, it may continue directly to the execution
of the next stage, without having to wait for the other threads to complete the execution of the
current stage. Therefore, these scheme renders the use of barriers useless. This is necesssary
for achieving lock-freedom.

Theorem 1 Refresh is a general scheme for processing a locality-aware workload in a lock-free
way, without sacrificing locality-awareness.

By inspection of the code Algorithm 1, we see that Traverse often adds the elements of a
traverse object to the traverse object of the next stage. Since helping may result in processing
elements more than once, some elements may be added in a traverse object multiple times. This
is why the definition of a Traverse object S allows for elements to appear more than once in
it. If the number of multiple instances becomes large, it may result in performance overhead.
Experiments showed that in FreSh, this number is (on average) 5 · 10−5 of the initial dataset
size; this overhead is negligible.
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5 FreSh

We follow the data processing flow described in Section 3 and employ Refresh to come up
with FreSh, the first lock-free locality-aware data series index. FreSh employs the four traverse
objects, BC , TP , PS , and RS (see Section 3), to implement the buffer creation, the tree
population, the pruning and the refinement stages, respectively.

5.1 Buffers Creation and Tree Population

BC is implemented using a single buffer, called RawData. A number of worker threads process
RawData by acquiring parts of it. In BC , Put is never used, as we assume that the data
are already in RawData when FreSh starts its execution. To implement Traverse, we em-
ploy Refresh. We split RawData into k equally-sized chunks of consecutive elements to get k
workloads. Threads use a counter object to get assigned chunks to process. To reduce the cost
of helping, FreSh calls Refresh recursively. Specifically, it splits each chunk into smaller parts,
called groups, and employ Refresh a second time for processing the groups of a chunk. In more
detail, FreSh maintains an additional counter object for each chunk of RawData. Each thread
t that acquires or helps a chunk, uses the counter object of the chunk to acquire groups in the
chunk to process. FreSh also applies a third level of Refresh recursion, where each workload is
comprised of the processing of just a single element of a group.

Pseudocode for BC .Put and BC .Traverse is provided in Algorithm 3. RawData is com-
prised of k chunks, each containing m groups. Moreover, each group contains r elements.
FreSh uses three sets of done flags, DChunks, DGroups, and DElements, storing one done
flag for each chunk, for each group, and for each element, respectively. Similarly, FreSh
employs three sets of counter objects, Chunks, Groups, and Elements, to count the chunks,
groups and elements, assigned to threads for processing. FreSh also employs two sets of help-
ing flags, HChunks (for helping chunks) and HGroups (for helping groups). In an invoca-
tion of Traverse(&BufferCreation, RawData, Dchunks, DGroups, DElements, HChunks,
HGroups, False, Chunks, Groups, Elements, 1), h is equal to False. By the way a counter
object works, it follows that no expeditive mode is ever executed at the first level of the recur-
sion. Note that at this level, the roles of D1 and H1 are played by the one-dimensional arrays
DChunks and HChunks, respectively. Moreover, DGroups and DElements play the role of
D2 and D3, respectively, and HGroups plays the role of H2. Each chunk is processed by recur-
sively calling Traverse (level-2 recursion). The goal of a level-2 invocation of Traverse is to
process an entire chunk by splitting it into groups and calling Traverse once more (level-3 re-
cursion) to process the elements of each group. Note that in a level-2 invocation corresponding
to some chunk i, RawData is the two-dimensional array containing the elements of the groups
of chunk i. Moreover, the role of D1 is now played by the one-dimensional array DGroups[i],
and the role of D2 by the two-dimensional array DElements[i], whereas D3 is no longer needed
and is NULL. The role of H1 is now played by the one-dimensional array HGroups[i].

FreSh implements the backoff scheme of Refresh in a way that the backoff time depends on
the average execution time required by each thread to process a group. Specifically, each thread
t counts the average time Tavg it has spent to process all the parts it acquired, and whenever
it encounters a group to help, it sets the backoff time to be proportional to Tavg and performs
helping only after backoff, if it is still needed.

FreSh implements TP using a set of 2w summarization buffers (where w is the number
of segments of an iSAX summary), one for each bit sequence of w bits. To decide to which
summarization buffer to store a pair, FreSh examines the bit sequence consisting of the first bit
of each of the w segments of the pair’s iSAX summary, and places the pair into the corresponding
sumarization buffer. Each of the summarization buffers is split into N parts, one for each of
the N threads in the system. Each thread uses its own part in each buffer to store the elements
it inserts.
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To implement TP .Traverse, we split the elements of TP into as many workloads as the
number of summarization buffers, and apply Refresh. As in Algorithm 3, threads use a counter
object to get assigned summarization buffers to process. Each summarization buffer could be
further split into chunks and groups and Refresh could be called recursively. Pseudocode for
Traverse of TP closely follows that for BC , and is omitted due to lack of space.

By inspection of the pseudocode of routines BufferCreation and TreePopulation (Al-
gorithm 3), and by Theorem 1, we get:

Lemma 1 The following claims hold:

(1) BC and TP are lock-free implementations of a traverse object that supports Put and
Traverse(∗, ∗, 0 ).

(2) For every thread t, when an invocation of Traverse(&BufferCreation, ∗, False) by t on
BC (TP) completes, the following hold. For every data series ds in RawData, a pair
comprised of the iSAX summary of ds and an index to the position of ds in RawData,
has been added in TP (PS).

5.2 Prunning and Refinement

In FreSh, PS is implemented as a forest of 2w leaf-oriented trees with fat leaves, one for each
of the summarization buffers. The trees of the forest are the root subtrees of a standard
iSAX-based tree. To support the concurrent population of a subtree by multiple threads,
FreSh utilizes Algorithm 5 presented in Section 5.2.1 (and discussed later). To implement
PS .Traverse (Algorithm 4), FreSh uses Refresh to process the different subtrees of the index
tree. Specifically, each thread t is assigned a subtree T to process, using FAI . To process the
nodes of T , Refresh is applied recursively. Specifically, the threads working on T (owner and
helpers) use a counter object to get assigned nodes in T . A thread t that is assigned node i of
T to process, first searches for the i-th node in an inorder traversal of T , and then processes it
by invoking the Prunning function, presented in Algorithm 1.

To find the i-th node of a subtree T in an efficient way, for each node nd of T , FreSh maintains
a counter cntnd that counts the number of nodes in the left subtree of nd . FindNode (line 1d)
uses these counters to find the i-th node of T by simply traversing a path in T . Function
TotalNodes calculates the total number of nodes in a subtree, by simply traversing the
righmost path of T and summing up the counters stored in the traversed nodes.

Lemma 2 The following claims hold:

(1) PS is a lock-free implementation of a traverse object that supports Put and Traverse(∗,
∗, 0 ).

(2) For every thread t, when an invocation of Traverse(&Prunning, ∗, False) by t on PS
completes, for every leaf ` in PS, if the lower bound distance of ` from the query series Q
is smaller than BSF , ` has been added in RS.

5.2.1 Insert in Leaf-Oriented Tree

Pseudocode is provided in Algorithm 5. Each node of the tree stores a key and the pointers
(left and right) to its left and right children. A leaf node stores additionally an array D, where
the leaf’s data are stored. We assume that each data item is a pair containing a key and the
associated information. Note that a node may have its own key. For instance, in iSAX-based
indexes, this key is the node’s iSAX summary.
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The novelty of the proposed implementation is that it allows to multiple insert operations
to concurrently update array D of a leaf. This results in enhanced parallelism and good per-
formance. To achieve this, each leaf ` contains a counter object, called Elements. Each thread
t that tries to insert data in `, uses Elements to acquire a position pos in the array D of `.
If D is not full, t stores the new element in D[pos]. Otherwise, t attempts to split the leaf
node. Note that during spliting, D may contain empty positions, since some threads may have
acquired positions in D but have not yet stored their elements in it. To avoid situations of
missing elements, each leaf contains an Announe array with one position for each thread. A
thread announces its operation in the Announce array before it attempts to acquire a position
in D. During spliting, a thread distributes to the new leaves it creates not only the elements
found in D but also those in Announce.

More specifically, a thread t executing TreeInsert repeatedly (line 6) executes the following
actions. It first calls a standard Search routine to traverse a path of the tree and find an
appropriate leaf node and its parent (line 7). Pointer ptr is a reference to the appropriate child
field of parent which needs to be changed to perform TreeInsert (lines 8-10). Next, t access
the counter object to acquire a position in D (line 13) and proceeds to announce the data that
it wants to insert in the tree (line 14). Afterwards, it announces this position in Announce and
stores the data in D[pos] (line 17), if D is not full (line 15). If D is full, it calls SplitLeaf to
split leaf .

SplitLeaf first creates three new nodes (lines 24-26), an internal node and its two children
which are leaves. Next, it collects the elements of Announce in splitbuffer (lines 29-32). It then
distributes the keys of leaf to the newly created leaves (line 34) and performs a CAS on the
appropriate child of `’s parent in an effort to replace ` with this subtree of three nodes. If this
CAS succeeds, then the data have been added and TreeInsert completes. Otherwise, some
other thread has successfully split the node.

To better understand the necessity of Announce, let’s assume that Announce (and all code
lines that refer to it) do not exist. Then, the following scenario may occur. A thread t that
wants to insert its data in a leaf ` may acquire a position in D of `, and before recording
its data there, another thread t′ may split `. Then, t may continue and insert its data in `,
which however has already been replaced in the tree. Thus, the data of t are lost. Algorithm 5
addresses this problem as follows.

Thread t attempts to acquire a position in D (line 13). If it t sees that helpers have arrived,
it announces its operation op in Announce (line 14). While t ′ splits l , it takes into account
not only the data of op but also of all other insert operations already announced (lines 29-32).
Moreover, t′ marks op as applied by copying into the announce array of the new (internal) node
newNode it creates, a non-⊥ position value for op (line 33). This allows t to determine that op
has been applied, even if concurrent splitting is performed. Specifically, t uses ptr to re-read
the appropriate child pointer of parent (line 20) and examines the position field in Announce[t]
of the node parent points to (line 20). If the CAS of line 35 is successfully executed by t,
or another thread t′ sees the data of op in Announce (or in D) and takes them into account
while splitting, then position will not be ⊥. This way t discovers that op has been applied and
returns. If position is still ⊥, t tries again (line 22).

If t’s operation has been applied, t cleans its record in the announce array (line 21) to
support additional insert operations on the same leaf node in the future.

We finally discuss the following subtle scenario. Assume that the owner thread t calls
TreeInsert, reaches a leaf l , and acquires the last valid position in array D of l . Thread t
executes in expeditive mode (so it does not announce its data), and before it records its data in
D, it becomes slow. Next, a helper thread t′ reaches l , switches l ’s execution mode to standard,
and splits ` (executing on standard mode). Unfortunately, during this split, t′ will not take into
consideration the data of t, since t neither has announced its operation (since t was executing
in expeditive mode), nor has yet written its data into D. To disallow thread t from finishing its
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operation without inserting its data, TreeInsert provides the following mechanism (lines 19-
22). Before it terminates, thread t re-reads the appropriate child field of the parent of ` (through
ptr) and checks the helpersExist flag of the node nd that ptr points to, to figure out whether
it can still operate on expeditive mode. In the scenario above, nd will be the node that t′ has
allocated to replace `, and thus it has its helpersExist flag equal to True (line 24). This way, t
discovers that the execution mode for l has changed (line 19 and first condition of line 20), and
re-attempts its Insert (line 22).

Lemma 3 Algorithm 5 is a linearizable, lock-free implementation of a leaf-oriented tree with
fat leaves, which supports only insert operations.

5.3 Refinement

To implement RS , FreSh uses a set of priorities queues each implemented using an array, as
shown in Algorithm 6. In FreSh, a thread inserts elements in all arrays in a round-robin
fashion. This technique results in almost equally-sized arrays, which is crucial for achieving
load-balancing.

To implement RS .Traverse, FreSh first calls InitDeletePhase (Algorithm 6) on each
of the arrays, to come up with sorted versions of them, shared to all threads. Then, it uses
Refresh to assign sorted arrays to threads for processing. To process the elements of a sorted
array SA, Refresh is applied recursively. Specifically, the threads working on SA use a counter
object to get assigned elements of SA. Processing of an element is performed by invoking
the Refinement function (Algorithm 1). Helping is done at the level of 1) each individual
priority queue and 2) the set of priority queues, in a way similar to that in PS . Pseudocode for
implementing Put and Traverse of RS resemles that of PS and is omitted.

For the implementation of UpdateBSF, FreSh uses a CAS object O. If a thread calls
UpdateBSF with value x, it repeatedly reads the current value y of O, and attempts to
atomically change it from y to x using CAS , until it either succeeds or some value smaller than
or equal to x is written in BSF.

Lemma 4 The following claims hold:

(1) RS is a linearizable lock-free implementation of a traverse object that supports Put and
Traverse(∗, ∗, 0 ).

(2) For every thread t, when an invocation of Traverse(&Prunning, ∗, True) by t on RS
completes, for every leaf ` in RS, ` either has been processed or it has been pruned.

Lemmas 1, 2 and 4 imply the following.

Theorem 2 It holds that:

(1) FreSh solves the 1-NN problem.

(2) FreSh provides a lock-free implementation of QueryAnswering (Algorithm 1).

6 Experimental Evaluation

Setup. We used a 40-core machine equipped with 4 Intel(R) Xeon(R) E5-4610 v3 1.7Ghz CPUs
with 10 cores each, and 25MB L3 cache. The machine runs CentOS Linux 7.9.2009 with kernel
version 3.10.0-1160.45.1.el7.x86 64 and has 256GB of RAM. Code is written in C and compiled
using the gcc compiler (version 11.2.1) with O2 optimizations.
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Datasets We evaluated FreSh and the competing algorithms (remember that they are all in-
memory algorithms) using both real and synthetic datasets. The synthetic data series, called
Random, were generated as random-walks (i.e., cumulative sums) of steps that follow a Gaussian
distribution (0,1). This type of data has been extensively used in the past [18, 8, 63, 62, 12, 13],
and models the distribution of stock market prices [18]. Our real datasets come from the
domains of seismology and astronomy. The seismic dataset, Seismic, was obtained from the
IRIS Seismic Data Access archive [31]. It contains seismic instrument recordings from thousands
of stations worldwide and consists of 100 million data series of size 256, i.e. its size is 100GB.
The astronomy dataset, Astro, represents celestial objects and was obtained from [52]. The
dataset consists of 270 million data series of size 256, i.e. its size is 265GB. Since the main
memory of our machine is limited to 256GB, we only use the first 200GB of the Astro dataset
in our experiments. In the evaluation, we report results for 50GB, 100GB, 150GB, and 200GB
for Random and Astro, and 50GB and 100GB for Seismic.
Evaluation Measures. During each experiment, we measure (i) the summarization time
required to calculate the data-series iSAX summarization and fill-in the receive buffers, (ii) the
tree time required to insert the items of the receive buffers in the tree-index, and (iii) the query
answering time required to answer 100 out-of-dataset queries (i.e., queries that belong to the
same dataset, but are not part of the index). The above times (all together) constitute the total
time. Each experiment is repeated 5 times, and the average of each measure is reported. All
algorithms return in all situations the exact, correct results.

6.1 Results

FreSh vs MESSI. We compare FreSh against MESSI, which is the state-of-the-art in-memory
data series indexing algorithm. Recall that MESSI is a blocking algorithm. To enable fair
comparison, the MESSI implementation we use is an optimized version of the original MESSI,
where we have applied all the code enhancements incorporated by FreSh.

Additionally, we compare FreSh against an extended version of MESSI, called MESSI-enh,
that allows several threads to concurrently populate the same sub-tree, during the tree creation
phase, instead of using a single thread to populate each subtree (as MESSI does). Specifically,
similarly to FreSh, after a thread has finished creating all the subtrees it acquired, instead of
remaining idle waiting the remaining threads to also finish this phase, it continues by scanning
and helping non-completed subtrees to be created. This is implemented in a blocking way,
using fine-grained locks that are attached on each of the leaf nodes of the sub-trees. MESSI-enh
allows to compare the lock-free index creation phase of FreSh against a blocking one.

Figure 2 shows that all algorithms (FreSh, MESSI, and MESSI-enh) continue scaling as the
number of threads is increasing, for Random 100GB and Seismic 100GB (top and bottom row of
Figure 2, respectively). This is true for all three phases. Moreover, the total execution time of
FreSh (Figures 2a and 2e) is almost the same as the total execution time of all its competitors,
although it is the only lock-free approach. As expected, the tree index creation time of FreSh
is smaller than MESSI’s for the Random dataset (Figures 2c), since FreSh allows subtrees to
be populated concurrently by multiple threads, thus it allows parallelism during this phase, in
contrast to MESSI. Interestingly, FreSh achieves better performance than MESSI-enh, in most
cases. On the other hand, FreSh performs slightly worse than MESSI for Seismic (Figure 2g),
since the tree index of this dataset does not favor parallelism when multiple workers are working
on the same subtree, but this rather results on increased contention. This becomes obvious
when comparing MESSI with MESSI-enh. In any case, this performance gap between FreSh
and MESSI becomes negligible as the number of threads increases.

Considering scalability as the size of the dataset increases, Figure 3 demonstrates that
FreSh scales well on all datasets (Random, Astro, and Seismic). Actually, in most cases, FreSh
outperforms (is faster than) MESSI.
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(a) Total (b) Summarization (c) Tree index (d) Query answering

(e) Total (f) Summarization (g) Tree index (h) Query answering

Figure 2: Comparison of FreSh against MESSI and MESSI-enh: (a)-(d) on 100GB Random and
(e)-(h) on 100GB Seismic.

We have also studied the performance of FreSh when answering query workloads of increas-
ing difficulty. Following previous works [62, 47], we also conducted experiments with query
workloads of increasing difficulty. For these workloads, we select series at random from the
collection, add to each point Gaussian noise (µ = 0, sigma = 0.01− 0.1), and use these as our
queries. Figure 4 presents the results for the Seismic dataset, where FreSh performs better than
MESSI in most cases.
FreSh vs Baselines. In the following, we compare FreSh against several baseline lock-free
implementations of the different stages of an iSAX-based index. Our results, presented in
Figure 5, including Random, Seismic, and Astro, with size 100GB, show that FreSh performs
better than all these implementations.
Summarization Baseline: For buffer creation, we have experimented with four implemen-
tations, called DoAll, DoAll-Split, FI-Based, and CAS-Based. All algorithms use a single summa-
rization buffer which has as many elements as RawData. The iSAX summary of the data series
stored in the i-th position of RawData is stored in the i-th position of the summarization buffer.
In DoAll, each thread t traverses RawData and for every traversed data series, it calculates its
iSAX summary and stores it in the summarization buffer. As soon as these actions have oc-
cured, we say that the data series has been processed. Since the performance of DoAll during
summarization phase was almost 5x worse than the next worse algorithm, we avoid including
it in our results (Figure 5) to enable easier comparison of the remaining algorithms.

DoAll-Splitis an optimized version of DoAll that splits RawData into N equaly-sized chunks
(where N is the number of threads). Each thread traverses RawData starting from the first
element of its assigned chunk. Thus, if each chunk has size m, thread i will start from position
i ∗m and the last position to examine will be position i ∗m− 1. DoAll-split stores a flag with
each data series. The flag is set after the data series has been processed. For each data series
it traverses, a thread first checks whether its flag is set, and if not it processes the data series.
Otherwise, it simply proceeds to the next data series. The thread stops when it has traversed
the entire array (which is now handled as if it is circular).

To avoid having all threads calculating all iSAX summaries, FI-Based uses a FAI object O
with initial value 0. Each thread t repeatedly performs the following: It executes a FAI on O
to get a position v of RawData, and then process the data series stored in this position. To
achieve lock-freedom, FI-Based stores in RawData, a boolean flag (initally false) with each data
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(a) Total (b) Summarization (c) Tree index (d) Query answering

(e) Total (f) Query answering (g) Total (h) Query answering

Figure 3: Comparison of FreSh against MESSI: (a-d) on Random with size 50GB, 100GB,
150GB, and 200GB, (e)-(f) on Astro with size 50GB, 100GB, 150GB, and 200GB, and (g)-(h)
on Seismic with size 50GB and 100GB, for 40 threads.

(a) Total (b) Query answering

Figure 4: Comparison of FreSh against MESSI on Seismic 100GB with variable queries difficulty,
where an increasing percentage of noise is added to the original queries.

series. This flag, which we call done, is set to true after the data series has been processed and
its iSAX summary has been stored in the summarization buffer. When a thread figures out that
all RawData elements have been assigned for processing (i.e., FAI returns a value higher than
the number of elements of RawData), it re-traverses RawData to identify data series whose flag
is still false, and processes them. CAS-Based works similarly to FI-Based, while it uses CAS
instructions, instead of FAI .

Figure 5b shows that FreSh performs significantly better than all these implementations,
during its summarization phase.
Tree Population Baseline: To populate the tree, each thread is assigned elements of the
summarization buffer using FAI and inserts them in the index tree. To achieve lock-freedom in
traversing the summarization buffer, we apply the same DoAll-Split, FI-Based, and CAS-Based
techniques we describe above (but with the summarization buffer playing the role of RawData).

To achieve lock-freedom in accessing the tree, we borrow the flagging technique employed
by Ellen et al. [17]. A thread calls a search routine to traverse a path of the tree and reach an
appropriate leaf node l. Then, it flags the parent of l using CAS . If the flagging is successful,
the insert is performed. Then, l’s parent is unflagged (using CAS ). Flagging stores a pointer
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(a) Total (b) Summarization (c) Tree index (d) Query answering

Figure 5: Comparison of FreSh against baseline implementations on Random 100GB.

to an info record in the flagged node. Other threads may use this info record to help the insert
complete.

We have also experimented with FI-Based-NoSum, a lock-free implementation that avoids
using the summarization buffers and inserts directly iSAX summaries in the index tree, by
applying the FI-Based technique on RawData.

Figure 5c shows again that FreSh performs significantly better than all these implementa-
tions, for tree index creations.
Pruning Baseline: All baselines use a single instance of an existing skip-based lock-free
priority queue [39] to store the candidate data series. Threads uses FAI to find the next node
to process in the index tree. A thread t that has been assigned the i-th tree node, first executes
a search to find this node. To do so in O(h) time (where h is the height of the tree), we maintain
a counter in each node nd, counting how many nodes are contained in the left subtree of nd.
Using these counters, we can fast navigate to the i-th node, by traversing a path of the tree.

When t reaches the i-th node, it checks whether the node can be pruned. If it cannot be
pruned and the node is a leaf, the thread appends it in the priority queue. In either case the
node is marked as processed. To ensure lock-freedom, when a thread t discovers that all nodes
of the tree have been assigned for processing, it re-traverses the tree to examine whether there
are any nodes that are still unprocessed and if there are such nodes, it processes them. A flag
is maintained for each tree node to indicate whether its processing has been completed. This
flag is set when the node is marked as processed. During re-traversal, t examines the flag of
each element it visits, and does not process it if its flag is set (i.e., if the node is marked as
processed).
Refinement Baseline: All threads, repeatedly call DeleteMin, on the priority queue to remove
elements from the queue and calculate their real distance computation. This simple algorithm
is not lock-free as a thread may crash after it has deleted an element from the queue. In this
case, the deleted leaf will not be processed. This problem can be easily fixed but that would
increase the cost of DeleteMin. Experiments show that even the non lock-free simple technique
above is quite costly in comparison to our approach.

Figure 5d shows again that FreSh performs significantly better than all these implementa-
tions, for query answering time, that includes pruning and refinement.
Performance breakdown for index creation phase. In this section we evaluate the tech-
niques incorporated by FreSh to create its tree index by comparing it against three modified
versions of it. Recall that in FreSh each thread populates each of the subtrees it acquires in
expeditive mode, as long as no helper reaches the same leaf of the tree; when this happens
it changes its execution mode to standard. So, FreSh allows leaves of the same subtree to be
processed in different modes of execution. In the first modified version, called Subtree, threads
start again by populating a subtree in expeditive mode, while they change to standard mode as
long as a helper reaches this subtree (and not when it reaches one each leaves, as FreSh does);
so, in Subtree all the leaves of a subtree are executed in a single mode at each point in time. In
the second modified version, called Standard, threads populate subtrees using only the standard
execution mode; i.e., there is no expeditive mode. In the third modified implementation, called
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(a) Random (b) Seismic

Figure 6: Comparison of FreSh tree index creation against other tree implementations: (a) on
Random of size 50GB, 100GB, 150GB, and 200GB, and (b) on Seismic of size 50GB and 100GB.

TreeCopy, a thread t first populates a private copy of the subtree (i.e. one that is accessible
only to t) and only after its creation finishes, t tries to make it the (single) shared version of this
subtree (by atomically changing a pointer using a CAS instruction); threads help each other by
following the same procedure.

Figure 6 compares FreSh against the modified versions on Random and Seismic with variable
dataset sizes and shows that it performs better than them, in all cases. Interestingly, for Seismic
50GB FreSh performs similarly to TreeCopy. Recall that each thread works on its own private
copy and, on each subtree, they contend at most once on the corresponding CAS object. So,
TreeCopy both restricts parallelism and minimizes the synchronization cost, which are properties
that provide an advantage on Seismic, as already discussed (Figure 2g).

7 Conclusions and Discussion

Processing big collections of data series is of paramount importance for a wide range of appli-
cations, which need support for efficient and scalable similarity search. Current state-of-the-art
data series indexes exploit the parallelism supported by modern multicore machines. Yet, their
design is lock-based, which means that they cannot tolerate failures. In this work, we present
FreSh, the first lock-free (thus, highly fault-tolerant) data series index. Moreover, we describe
Refresh, a generic approach for designing, building and analyzing highly-efficient data series
indexes in a modular way, and for supporting lock-freedom, which can be applied on top of
any locality-aware data series algorithm. FreSh was built using the Refresh principles, and the
experimental evaluation demonstrates that it performs as good as the state-of-the-art blocking
index, thus, paying no penalty for providing the desirable fault-tolerance.

In a related avenue, the work in [26, 3] focuses on synchronization primitives and data
structures for settings that support more general types of faults where a thread may recover
after a crash. Such settings are met e.g., in machines that support Non-Volatile Memory (NVM).

In [26], the power of software combining [20, 21, 22, 23] in achieving recoverable synchro-
nization and designing persistent data structures is studied. Software combining is a general
synchronization approach, which attempts to simulate the ideal world when executing synchro-
nization requests (i.e., requests that must be executed in mutual exclusion). A single thread,
called the combiner, executes all active requests, while the rest of the threads are waiting for the
combiner to notify them that their requests have been applied. Software combining significantly
decreases the synchronization cost and outperforms many other synchronization techniques in
various cases.

Three persistence principles are identified that are crucial for performance [26]. An algo-
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rithm’s designer has to take into consideration these principles when designing highly-efficient
recoverable synchronization protocols or data structures. The paper [26] illustrates how to
make the appropriate design decisions in all stages of devising recoverable combining protocols
to respect these principles. Specifically, it proposes recoverable software combining protocols
that are many times faster and have much lower persistence cost than a large collection of
existing persistent techniques for achieving scalable synchronization. It also provides funda-
mental recoverable data structures, such as stacks and queues, based on these protocols that
outperform by far existing recoverable implementations of such data structures, and the first
recoverable implementation of a concurrent heap and present experiments to show that it has
good performance when the size of the heap is not very large.

To cope with more complicated data structures and objects of large size, the work in [3]
presents a generic approach for deriving detectably recoverable implementations of many widely-
used concurrent data structures. Such implementations are appealing for emerging systems
featuring byte-addressable non-volatile memory (NVM ), whose persistence allows to efficiently
resurrect failed threads after crashes. Detectable recovery ensures that after a crash, every
executed operation is able to recover and return a correct response, and that the state of the
data structure is not corrupted. The proposed approach, called Tracking, amends descriptor
objects used in existing lock-free helping schemes with additional fields that track an operation’s
progress towards completion and persists these fields in order to ensure detectable recovery.
Tracking avoids full-fledged logging and tracks the progress of concurrent operations in a per-
thread manner, thus reducing the cost of ensuring detectable recovery. Tracking has been
applied to derive detectably recoverable implementations of a linked list, a binary search tree,
and an exchanger.
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F. Mattana, and J. Tueller. Long-term variability of agn at hard x-rays. Astronomy &
Astrophysics, 563:A57, 2014.

21



[53] H. Sundell and P. Tsigas. Fast and lock-free concurrent priority queues for multi-thread
systems. Journal of Parallel and Distributed Computing, 65(5):609–627, 2005.

[54] O. Tamir, A. Morrison, and N. Rinetzky. A Heap-Based Concurrent Priority Queue
with Mutable Priorities for Faster Parallel Algorithms. In E. Anceaume, C. Cachin, and
M. Potop-Butucaru, editors, 19th International Conference on Principles of Distributed
Systems (OPODIS 2015), volume 46 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 1–16, Dagstuhl, Germany, 2016. Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik.

[55] S. Timnat and E. Petrank. A practical wait-free simulation for lock-free data structures. In
Proceedings of the 19th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, PPoPP ’14, pages 357–368, New York, NY, USA, 2014. Association for
Computing Machinery.

[56] Y. Wang, P. Wang, J. Pei, W. Wang, and S. Huang. A data-adaptive and dynamic seg-
mentation index for whole matching on time series. VLDB, 2013.

[57] A. D. Williams. C++ Concurrency in Action: Practical Multithreading. Manning Publi-
cations, 2012.
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Algorithm 1: Implementation of an iSAX-based index using the traverse objects BC ,
TP , PS , RS .

. Shared objects:
1 TraverseObject BC , initially containing all raw data series
2 TraverseObjects TP , PS , RS , initially empty
3 int BSF

. Code for thread ti, i ∈ {0, . . . , n− 1}:
Procedure QueryAnswering(QuerySeriesSet SQ): returns int

4 BC .Traverse(&BufferCreation(), BCParam, False)
5 TP .Traverse(&TreePopulation(), TPParam, False)
6 PS .Traverse(&Prunning(), PSParam, False)
7 RS .Traverse(&Refinement(), RSParam, True)
8 return BSF

Procedure BufferCreation(DataSeries ds)
9 iSAXSummary iSAX := Calculate the iSAX summary for ds

10 Index bind := index to appropriate buffer based on iSAX
11 TP .Put(〈iSAX , index of ds 〉, bind)

Procedure TreePopulation(Summary iSAX , Index ind, Index bind, Boolean flag)
12 PS .Put(〈iSAX , ind〉, bind , flag)

Procedure Prunning(DataSeries Q, DataSeriesSet E, Boolean flag): returns boolean
13 iSAXSummary iSAX := Calculate the iSAX summary for E
14 int lbDist := lower bound distance between iSAX and Q
15 if lbDist < BSF then
16 RS .Put(〈E , iSAX 〉, flag)
17 return TRUE

18 return FALSE

Procedure Refinement(DataSeries Q, DataSeriesSet E, Summary iSAX ,
Function *UpdateBSF): returns Boolean

19 int lbDist , rDist
20 lbDist := lower bound distance between iSAX and Q
21 if lbDist < BSF then
22 for each pair 〈iSAXds , indds〉 in E do
23 lbDist := lower bound distance between iSAXds and Q
24 if lbDist < BSF then
25 rDist := real distance between ds and Q
26 if rDist < BSF then
27 *UpdateBSF(BSF , rDist) . user-provided routine

28 return True

29 else return False
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Algorithm 2: Refresh- A general approach for transforming a blocking data structure
D of a big-data application A into a lock-free one.

. Shared variables:
1 workload part W := [w1 ,w2 , . . . ,wk ]
2 boolean F := [d1 , d2 , . . . , dk ], initially di = False, 1 ≤ i ≤ k
3 boolean H := [h1 , h2 , . . . , hk ], initially hi = False, 1 ≤ i ≤ k

. Code for each thread:
Procedure Refresh()

4 // acquire and process parts of W
5 while W has available parts do
6 wi := acquire an available part of W
7 mark wi as acquired
8 if hi = False then
9 process wi in expeditive mode, while checking that hi remains False; in case hi = True,

switch to standard mode
10 else process wi in standard mode
11 di := True

// scan flags for unprocessed parts of W and help

12 for each di ∈ D with di = False do
13 Backoff() // avoid helping, if possible

14 if di = False then
15 hi := True

16 process wi in standard mode, while periodically checking that di remains False; in case
di = True, stop processing wi

17 di := True
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Algorithm 3: Pseudocode for Traverse of BC in FreSh. Code for thread t.

. Shared variables:
1 Set RawData[1..k][1..m][1..r], initially containing all data series

2 boolean DChunks[1 ..k ], DGroups[1 ..k ][1 ..m],
DElements[1..k][1..m][1..r], initially all False

3 boolean HChunks[1..k], HGroups[1..k][1..m], initially all False

4 CounterObject Chunks, Groups[1 ..k ], Elements[1 ..k ][1 ..m]
5 int Size[1 ..3 ] = {k ,m, r}

Procedure Traverse(Function *BufferCreation, DataSeries RawData[], Boolen D1[], Boolean D2[],
Boolean D3[], Boolean H1[], Boolean H2[], Boolean h, CounterObject Cnt1, CounterObject Cnt2[],
CounterObject Cnt3[], int rlevel)

6 int i
// acquire and process parts of W

7 while True do
8 〈i , ∗〉 := Cnt1 .NextIndex(&h)
9 if i > Size[rlevel ] then break

10 mark RawData[i ] as acquired
11 if rlevel < 3 then Traverse(BufferCreation,RawData[i ],D2 [i ],D3 [i ],D3 [i ],

H2 [i ],NULL,H1 [i ],Cnt2 [i ],Cnt3 [i ],Cnt3 [i ], rlevel + 1 )
12 else *BufferCreation(RawData[i])
13

14 D1 [i ] := True

// scan flags for unprocessed parts of W and help

15 for each j such that D1 [j ] is equal to False do
16 Backoff() // avoid helping, if possible

17 if D1 [j ]] = False then
18 H1 [j ] := True

19 if rlevel < 3 then Traverse(BufferCreation,RawData[j ],D2 [j ],D3 [j ],D3 [j ],
H2 [j ],NULL,H1 [j ],Cnt2 [j ],Cnt3 [j ],Cnt3 [j ], rlevel + 1 )

20 else *BufferCreation(RawData[j])
21 D1 [j ] := True
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Algorithm 4: Pseudocode for Put and Traverse of PS in FreSh. Code for thread
t ∈ {1, . . . , N − 1}.
. Shared variables:

1 TreeNode *IndexTree[1..2w]
2 boolean DTree[1 ..2w ], HTree[1..2w], initially all False
3 CounterObject TreeCnt [1 ..2w ]

Procedure Traverse(Function *Prunning, TreeNode *T , CounterObject *Cnt, int x, Boolean h,
int rlevel)

4 int i
5 while True do
6 〈i , ∗〉 = Cnt .NextIndex(&h)
7 if i > x then break
8 if rlevel < 2 then
9 mark IndexTree[i ] as acquired

10 totalNds := TotalNodes(IndexTree[i ])
11 Traverse(Prunning , IndexTree[i ],TreeCnt [i ],

totalNds, False, rlevel + 1 )
12 DTree[i ] := True

13 else
14 nd := FindNode(T , i)
15 mark nd as acquired
16 *Prunning(nd)
17 mark nd as done

18 for each j such that DTree[j ] is equal to False do
19 Backoff() // avoid helping, if possible

2121 if DTree[j ]] = False then
2323 HTree[j ] := True

2525 HelpTree(Prunning, IndexTree[j ])

2727 DTree[j ] := True

Procedure FindNode(TreeNode *T , int i): returns TreeNode*
28 TreeNode *p = T
29 int nds = 0
30 while p 6= NULL and nds 6= i do
31 if nds + p → cnt + 1 < i then
32 nds = nds + p → cnt + 1
33 p = p → rc

34 else p = p → lc

35 return p

Procedure HelpTree(Function *f , TreeNode *T )
36 if T == NULL then return
37 HelpTree(f , T → lc)
38 if ∗T is unprocessed then *f(∗T )
39 HelpTree(f , T → rc)
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Algorithm 5: TraverseTree: a lock-free leaf-oriented tree with fat leaves, implementing
a traverse object. Code for thread t ∈ {0, . . . , n− 1}.
. type Node

int key
{Node,Leaf} *left
{Node,Leaf}
*right
InsertRec
Announce[0..n−1]
Boolean
helpersExist

. type InsertRec
Data data
int position

. type Leaf extends
Node

Data D[0..m− 1]
CounterObject
Elements;

. Shared variables:
1 {Node,Leaf} *Tree := null, initially pointing to a Leaf that is initialized with
〈key ,null,null, 〈〈⊥,⊥〉, . . . , 〈⊥,⊥〉〉, False,〈⊥, . . . ,⊥〉,⊥, 0〉

Procedure TreeInsert(Data data, Boolean isHelper)
2 Leaf *leaf
3 {Node,Leaf} *parent := Tree, **ptr
4 int pos, val
5 Boolean expeditive
6 while True do
7 〈leaf , parent〉 := Search(data, parent)
8 if parent = null then ptr := &Tree
9 else if parent → left = leaf then ptr := &parent → left

10 else ptr := &parent → right
11 if isHelper = True and leaf → helpersExist = False then
12 leaf → helpersExist := True

13 〈pos, expeditive〉 := Elements.NextIndex(&leaf → helpersExist)14 if expeditive = False then
leaf → Announce[t ] := 〈data,⊥〉

15 if pos < M then
16 if expeditive = False then

leaf → Announce[t ].position := pos
17 leaf → D [pos] := data

18 else SplitLeaf(leaf , ptr , expeditive) // split leaf node

19 if (*ptr)→ helpersExist = True then
20 if expeditive = False and

(*ptr)→ Announce[t].position 6= ⊥ then
21 (*ptr)→ Announce[t] := 〈⊥,⊥〉
22 else continue

23 return

Procedure SplitLeaf(Leaf leaf , Node **prt, Boolean expeditive)
24 Node *newNode := new Node initialized with 〈⊥,null, null, 〈〈⊥,⊥〉, . . . , 〈⊥,⊥〉〉,not expeditive〉
25 Node *newNode → left := new Leaf initialized with 〈⊥,null,null, 〈〈⊥,⊥〉, . . . ,

〈⊥,⊥〉〉, False,〈⊥, . . . ,⊥〉,⊥, 0〉
26 Node *newNode → right := new Leaf initialized with 〈⊥,null,null, 〈〈⊥,⊥〉, . . . ,

〈⊥,⊥〉〉, False,〈⊥, . . . ,⊥〉,⊥, 0〉
27 Set splitBuffer := ∅
28 if expeditive = False then
29 for int i ∈ {0, . . . , n− 1} with leaf → Announce[i ].data 6= ⊥ do
30 Data ldata := leaf → Announce[i ].data
31 if leaf → Announce[i ].position 6= ⊥ then

leaf → D [leaf → Announce[i ].position] := ldata
32 else add ldata to splitBuffer
33 newNode → Announce[i ] := 〈ldata, -1〉

34 distribute non-⊥ distinct elements of leaf → D [i ] ∪ splitBuffer into newNode → left and
newNode → right , with the appropriate keys, and fix key of newNode // may result in more

leaf splits

35 CAS(*ptr , leaf ,newNode)
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Algorithm 6: Priority queue of FreSh. Code for thread t.

. Shared variables:
1 〈int ,Data〉 A[0..k − 1], initially all 〈⊥,⊥〉
2 CounterObject Cnt
3 Boolean helpersExist , initially False

4 int insPos, initially 0
5 〈int ,Data〉 *SA, initially null

Procedure Insert(int priority, Data values, Boolean isHelper)
6 int pos
7 pos := FAI (insPos)
8 A[pos] := 〈priority , value〉

Procedure InitDeletePhase()
9 〈int ,Data〉 *sa

10 sa := allocate local sorted array of insPos elements, initially all 〈⊥,⊥〉
copy into sa the non-⊥ elements of A and sort them

11 CAS(&SA,null, sa)

Procedure DeleteMin(Boolean isHelper): returns Data
12 int pos
13 if isHelper = True and helpersExist = False then
14 helpersExist := True

15 pos := Cnt .NextIndex(&helpersExist)
16 if pos ≥ insPos then return ⊥
17 return SA[pos].data
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