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Abstract

This paper presents Odyssey, a novel distributed data-series processing framework that
efficiently addresses the critical challenges of exhibiting good speedup and ensuring high
scalability in data series processing by taking advantage of the full computational capacity of
modern clusters comprised of multi-core servers. Odyssey addresses a number of challenges
in designing efficient and highly-scalable distributed data series index, including efficient
scheduling, and load-balancing without paying the prohibitive cost of moving data around.
It also supports a flexible partial replication scheme, which enables Odyssey to navigate
through a fundamental trade-off between data scalability and good performance during
query answering. Through a wide range of configurations and using several real and synthetic
datasets, our experimental analysis demonstrates that Odyssey achieves its challenging goals.

1 Introduction

Motivation. Processing large collections of real-world data series is nowadays one of the most
challenging and critical problems for a wide range of diverse application domains, including
finance, astrophysics, neuroscience, engineering, and others [35, 67, 38]. Such applications
produce big collections of ordered sequences of data points, called data series. When data series
collections are generated, they need to be analyzed in order to extract useful knowledge [31, 63,
27, 49, 9, 10, 33].

This analysis usually encompasses answering similarity search queries [35, 15, 16], which
apart from being useful for pattern matching, they also lie at the core of several machine
learning methods, such as clustering, classification, motif and outlier detection, etc. Moreover,
several applications across domains are very sensitive to the accuracy of the results [38, 5], and
therefore, require exact query answering, which is what we focus on in this work.

As the size of the data series collections grows larger [35, 38], recently proposed state-of-the-
art data series indexes [36, 43, 44] exploit parallelism through the use of multiple threads [43,
45, 44, 40, 41, 13] and the utilization of the SIMD capabilities of modern hardware. However,
the unprecedented growth in size that )data series collections experience nowadays renders
even state-of-the-art parallel data series indexes inadequate [36, 15, 16, 38, 5, 25]. Achieving
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enhanced performance and high scalability, thus, turns out to be one of the most pressing
issues in data series processing. To address these issues, all computing elements of modern
computing platforms must be exploited, including not only the multi-core and SIMD capabilities
of each system node, but also the full capacity of multiple nodes, which enables fast in-memory
processing of large datasets (that would not fit in any single node). This is the problem we
address in this work.
Challenges. In the context of data series similarity search, exact query answering is very
demanding in terms of resources, even when using a data series index. We need to either prune,
or visit every single leaf of the index. Previous works [15, 25] though, have shown that pruning
is not particularly effective, especially for some hard datasets (such as Seismic [2], which we
discuss and use, among other data sets, in Section 4).

The main goal we need to satisfy is (naturally) scalability. That is, increasing the available
hardware resources (e.g., the number of nodes) should decrease the time cost, ideally by an
equivalent amount, or should enable to process an equivalent amount of additional data (at
about the same time cost). In order to meet this goal, we need to ensure that all nodes of
the distributed system equally contribute to completing the work, during the entire duration
of the execution. In turn, this translates to producing effective solutions to the following two
problems: (i) query scheduling: given a query workload, decide which queries to assign to each
system node; and (ii) load-balancing: devise mechanisms so that system nodes that have finished
their work can help other system nodes finish theirs.

The challenges in this context are the following. First, to achieve effective query scheduling,
we need to come up with mechanisms for estimating the execution cost of data series similarity
search queries, which do not currently exist. Second, this observation renders a load balancing
scheme necessary, yet, this also means that we need to replicate data in order to make such
a mechanism viable, as moving big volumes of data series around would be prohibitively ex-
pensive. Data replication works against data scalability and is more costly in whatever regards
index creation time, but results in better query answering times, thus leading in interesting
trade-offs through which an effective solution should navigate. Third, along with all the above
considerations, we also need to ensure that our solutions will still maintain their good paral-
lelization properties for efficient execution in multi-core CPUs inside each system node, and
also achieve high pruning power during query answering.
Our Approach. We propose a novel distributed data-series (DS) indexing and processing
framework, called Odyssey, that efficiently addresses the high scalability objective by taking
advantage of the full computational capacity of the computing platform. To come up with
Odyssey, we undertook a long but fascinating journey of understanding the issues to solve and
design the appropriate mechanisms in order to deal with the challenges described above for an
efficient and highly-scalable distributed data series index.

To come up with an appropriate scheduling scheme for Odyssey, we performed a query
analysis that shows correlation between the total execution time and a parameter of the category
of the single-node data series indexes we consider. This analysis drove the design of efficient
scheduling schemes, by generating an execution time prediction for each query of the input
query batch.

To achieve load balancing even in settings where predictions may not be accurate or they
cannot be effectively used (e.g., when the queries are produced dynamically and are not known
a priory), Odyssey provides a load balancing (LB) mechanism, ensures that nodes sitting idle
can take away (or steal) work from other nodes which have still work to do (provided that these
nodes store similar data). Combining Odyssey scheduler with this LB technique results in very
good performance and high scalability for all query batches we experiment with.

Ensuring data scalability and, at the same time, good performance for query answering
are kind of contradicting goals. A scheme where data are not replicated would result in the
lowest space overhead but experiments show that this technique does not ensure the best per-
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formance during query answering. This is so because the absence of data replication disallows
the utilization of the power of Odyssey’s LB mechanism, resulting in load imbalances.

Odyssey manages to effectively unify these two contradicting goals by supporting a flexible
partial replication scheme, which works for a spectrum of replication degrees. This way, it
navigates through the fundamental trade-off between data scalability and good performance
during query answering. The degree of replication is one of Odyssey’s parameters. By specifying
it appropriately, developers can choose the time-space trade-off that best suits their application
and setting. For example, for small datasets, they could utilize full replication to get the optimal
query answering time, while for large datasets, they could select a smaller replication degree or
no replication at all. Odyssey is built in a modular way by following appropriate design decisions
and by employing light-weight mechanisms that can be applied on top of one another to ensure
good performance in all cases, without adding any big overheads. Experiments illustrate that
Odyssey achieves good performance even when the degree of replication is relatively small.

Supporting the components for efficient distributed computation that Odyssey provides, on
top of an index that exploits the computation power of a single node as efficiently as state-of-
the-art parallel indexes [44, 40], was one more challenging task we undertook while designing
Odyssey. A simple approach of using an instance of the state-of-the-art index [44, 40] in each
node did not result in good performance mainly for two reasons. First, different data series
queries may exhibit variable degrees of locality and their access patterns are only revealed at
runtime. This results in low pruning degrees in some of the nodes, having as a consequence
severe load balancing problems, which led to performance degradation rather than achieving
any speedup (when utilizing more nodes). Second, supporting load-balancing on top of such a
simple approach would require moving data around, which is oftenoften prohibitively expensive.

Odyssey single-node indexing scheme borrows some techniques from state-of-the-art in-
dexes [43, 45, 44, 40, 41] in order to ensure certain principles that result in low-cost paralellism
and high performance within a single node. However, these techniques have been significantly
enhanced with new components and mechanisms, to achieve load balancing and come up with a
scheme in which work from an overloaded node can be given away to idle nodes without having
to pay the prohibited cost of moving any data around. The proposed scheme is innovative in
different ways. First, it employs a different pattern of parallelism from all exisitng approaches
in travesing the index tree to produce the set of data series that cannot be pruned. Second,
it presents new implementations for populating and processing the data structures needed for
efficient query answering. To achieve load balancing among the threads, it is critical to choose
an appropriate threshold on the size of these data structures. After performing a query analysis
which revealed a correlation between the median size of the data structures and some parameter
of the algorithm, Odyssey proposes an effective mechanism for predicting a good threshold. Ad-
ditionally, Odyssey provides efficient communication and book-keeping mechanisms, to enable
fast exhange of information between the nodes to ensure good pruning degrees in all of them.

Odyssey’s best performing algorithm is up to 6.6x faster than its competitors and more than
3.5x better than its best competitor. Additionally, Odyssey’s index creation perfectly scales as
both the dataset size and the number of nodes increase linearly. Moreover, Odyssey’s best
performing scheduling strategy is more than 2.5x faster than its initial one.
Contributions. The main contributions of this work are as follows:

• We describe Odyssey, a scalable framework for distributed data series similarity search in
clusters with multi-core servers. This makes our approach the first data series solution
that exploits parallelization both inside and across system nodes.

• We develop a scheduling algorithm for assigning queries to the nodes of the cluster, which
tries to balance the workload across the nodes by computing a (good-enough) estimation
of the execution time of each query.

• We present a novel exact search algorithm that supports work-stealing between nodes that
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(a) Data Series (b) PAA Summary (c) iSAX Summary (d) iSAX Tree

Figure 1: From data series to iSAX index

share the same index (full replication). Thus, our approach leads to high performance,
even when the work is not (or cannot be) equally distributed over the nodes of the cluster.
We further extend our solution to work even when only a part of the index is shared
among nodes (partial replication).

• Our approach supports different replication degrees among the nodes, allowing users to
navigate the entire spectrum of solutions, trading space (replication degree) for speed
(query answering time).

• We also present a density-aware data partitioning method that can efficiently partition
data in a way that improves the work balancing capabilities of our approach.

• Finally, we conduct an experimental evaluation (code and data available online [3]) with
a wide range of configurations, using several real and synthetic datasets. The evaluation
demonstrates the efficiency of Odyssey, which exhibits an almost linear scale-up, and up
to 6.6x times faster exact query answering times than the competitors.

2 Preliminaries and Related Work

Data Series. A data series, denoted as S = {p1, ..., pn}, is a sequence of points, where each
point pi is a pair (ui, ti), 1 ≤ i ≤ n, of a real value ui and the position ti of pi in the sequence;
n is the size (or dimensionality) of the sequence. When ti represents time, we talk about time
series. In several cases, we omit the ti, e.g., when they are equally spaced, or only play the role
of an index for the values ui [15]; for simplicity, we omit them, as well.
iSAX Summary. The iSAX summary [52] of a data series splits the x-axis in equal segments
and represents each segment with the mean value of the points of the data series that it contains
(see Figure 1). Then it partitions the y axis into regions of sizes determined by the normal
distribution and represents each region using a number of bits (cardinality). The number of
bits can be different for each region, and this enables the creation of a hierarchical tree index
(iSAX-based tree index [37]; see Figure 1).
Similarity Search. Given a collection of data series C and an input data series S, similarity
search is the task of finding the data series in C which are most similar to S. We focus on
finding a single best answer, known as the 1-NN problem. We also focus on Euclidean Distance
(ED). The euclidean distance (or real distance) between two time series T = {t1, ..., tn} and
S = {s1, ..., sn} is defined as ED(T, S) =

√∑n
i=1(ti − si)2. We call the distance between the

iSAX summaries of T and S, lower-bound distance. The lower-bound distance between any two
data series is always smaller than or equal to the real distance between them. We use the term
query to refer to a similarity search instance.
Single-Node Parallel Summary-Based DS Indexing. Such indexes [43, 45, 44, 40, 42]
exploit multiple threads (and SIMD) to create an index tree and answer queries on top of this
tree. They are usually comprised of two main phases, the tree index construction and the query
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Figure 2: Algorithm Outline of Parallel DS Indexes.

answering phases. In the tree-index construction phase, they first calculate, in parallel, summa-
rizations of all data series in the collection. If the summarizations are iSAX summaries, we talk
about iSAX-based DS indexing. To achieve a good degree of locality and low synchronization
overheads, they store these summaries into a set of summarization buffers. Data series that have
similar summarizations are placed into the same buffer. Subsequently, the data series of each
of these buffers are stored into each of the subtrees of the tree index that they construct. These
design decisions allow them to build the tree index in an almost embarrassingly parallel way
(thus, without incurring synchronization overheads), and achieve locality in accessing the data
during tree construction. They thus respect crucial principles for achieving good performance
that should be respected when designing a parallel index.

To answer a query, these indexes first calculate the summarization of the query. Subse-
quently, they traverse the index tree to find the most appropriate data series based on the iSAX
summary lower bound distances. The distance of these data series from the query series is
stored in a variable called best-so-far (BSF), and serves as an initial approximate answer to the
active query. Then, BSF is used to prune data series from the initial collection. A data series
S is pruned when the lower bound distance between S and the query is higher than the current
value of the BSF. This process outputs a hopefully small subset of the initial DS collection,
containing series that need to be further examined. These series are often stored in (one or
more) priority queues [44, 40, 41]. Multiple threads process, concurerntly, the elements of the
priority queues, calculating real distance (if needed), and updating the BSF each time a new
minimum is met (see Figure 2). Once this process completes, the answer is contained in BSF.
Multi-node Systems and Query Processing. The system consists of a number of asyn-
chronous nodes which communicate by exchanging messages. Each node is a multi-core machine,
capable to support multiple threads (and possibly SIMD computation). Threads communicate
by accessing shared variables. A shared variable can be atomically read and written. Stronger
primitives, such as Fetch&Add may also be provided. Fetch&Add(V, val) atomically adds the
value val to the current value of variable V and returns the value that V had before this update.

An arbitrarily large batch of queries is provided in the system as input. The goal is to
utilize the system’s computational power to execute these queries in a way that minimizes the
makespan, i.e., the length of time that elapses from the time that any node starts processing
a query of the batch to the first point that all nodes have completed their computation. Our
techniques can easily be adjusted to work with queries that arrive in the system dynamically.

The data series in the initial collection can be stored in all nodes (full replication), or may be
scattered to the different nodes so that nodes store disjoint subsets of the data (no replication).
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A partial replication scheme is also possible, where nodes store subsets of the data which are
not necessarily pairwise disjoint (e.g., more than one node may store the same subset of data
series). A data partitioning mechanism determines how to split and distribute the data of the
initial data-series collection to nodes.

Query scheduling algorithms aim to schedule the input queries to nodes in a way that
each node has approximately the same amount of work to do. Considering full replication, a
Static Query Scheduler (SQS) partitions the sequence of queries into N subsequences and each
node gets one of these subsequences to answer. A Dynamic Query Scheduler (DQS) employs
a coordinator node, and has other nodes requesting queries to execute from the coordinator.
The coordinator may serve requests by assigning the next unprocessed query to a worker when
it receives its request, or it may preprocess the sequence of queries (e.g., by re-arranging the
queries based on some property) before it starts assigning queries to nodes. To avoid loosing
computational power, the coordinator can answer queries itself between serving requests from
other nodes.

2.1 Related Work

Data series similarity search queries require the use of specialized index structures in order to be
executed fast on very large collections of data sequences. In general, data series indexes operate
by pruning the search space based on the summarizations of the series and corresponding lower
bounds, and only use the raw data of the series in order to filter out the false positives.
Data Series Indexes. Agrawal et al. [4] presented the first work that argued for the use of a
spatial indexing structure for indexing data sequences. This technique works by indexing the
first few DFT coefficients of each sequence using an R-Tree [51], and was later optimized by
considering the symmetric property of Fourier coefficients [48]. Various indices, specific to data
sequences, have been proposed in the literature [14]. Such indices are able to exploit the inherent
characteristics of the sequence summarization techniques they employ. DSTree [58] is an index
based on the APCA summarization [32]. The DSTree can adaptively perform split operations
by increasing the detail of APCA as needed. While this index intelligently adapts its leaf
summarizations leading to good data clustering, it is penalized in terms of indexing speed and
storage cost. The iSAX index is based on the SAX summarization, and its extension, iSAX [52].
In this case, the data series summarization is bitwise, leading to a concise representation and
overall index, as well as enabling fast (bitwise) index operations (including tree traversals and
leaf-node split operations). Following the initial iSAX index, several other iSAX-based indices
were proposed in the literature [37]. These indexes are among the state-of-the-art solutions in
this area [15], including MESSI [40], an in-memory, multi-core and SIMD-enabled version of the
iSAX index.
Data Series Management Systems. Several data series management systems have been
developed in the last few years [30, 14], several of which operate on top of Apache Spark, or
Flink. Beringei [39] has a custom in-memory storage engine. It compresses and organizes data in
a series per series scheme. CrateDB [12] partitions data in chunks, stores them in a distributed
file system, and indexes them using Apache Lucene. InfluxDB [28] uses Time-Structured Merge
Trees (LSM tree variant), logging data on disk as they arrive, and periodically merge-sorting
overlapping time-stamps. Prometheus [46] is based on the Beringei ideas. QuasarDB [47]
utilizes either RocksDB or Hellium [26]. Riak TS [50] supports both LevelDB or Bitcask, which
is a custom log structured hash table. Timescale [55] is a Postgres extension. It partitions
time series both in groups of series as well as in distinct time segments. It then provides
an abstraction of a single table. IoTDB [57] is geared towards streaming data series. Finally,
various systems such as OpenTSDB [34], Timely [54] (concentrated on security) and Warp10 [59]
are developed on top of HBase. All the aforementioned systems support range scans in the
positions, aggregation functions and filtering. InfluxDB supports queries like moving averages,
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prediction, transformations, etc, and Timescale supports gap filling. Nevertheless, none of the
above systems supports exact whole-matching similarity search queries.
Distributed Data Series Indexes. KV-Match [60] and its improvement, L-Match [21], are
index structures that can support similarity search. These indices can be implemented on top
of Apache HBase, and operate in a distributed fashion within Apache Spark. We note that
these solutions only support subsequnce similarity search, and not whole-matching [15], which
is the focus of this work. TARDIS [64] is an Apache Spark system for similarity search. It
supports approximate queries, as well as exact match queries, where we want to know if the
query appears exactly the same within the dataset, or not. This query type is much easier
that the exact queries we consider in our work, and cannot be efficiently transformed to exact
querying. Finally, DPiSAX [61, 62] is a distributed solution for data series similarity search,
developed for Apache Spark using Scala. Even though it was designed for answering batches of
approximate search queries, it supports both approximate and exact search queries. DPiSAX
exploits the iSAX summaries of a small sample of the dataset, in order to distribute the data
to the nodes equally. Then, an iSAX index is built in each node on the local data, and is used
to perform query answering. In order to produce the exact search results, all nodes need to
send their partial results to the coordinator, which merges them and produces the final, exact
answer.

In this study, we compare to DPiSAX, which the only distributed data series index solution
in the literature that supports exact search. In order to have a fair comparison, we implemented
the data distribution mechanism of DPiSAX in C, and integrated it with the MESSI index [40].

Work-stealing was employed in the Cilk framework [1]. The work-stealing approach was
formally studied and analyzed in [8, 19, 20]. A big amount of work has been done on this topic
(with [6, 7, 18] being just a few examples).

3 The Odyssey Framework

This section presents the main mechanisms employed by the Odyssey framework. All techniques
discussed here are provided in the framework.

3.1 Query Scheduling

To correctly answer a query, it should be forwarded to a set of system nodes which collectively
store all the data. Thus, in the no-replication case this set contains all system nodes, thus a
scheduling algorithm should forward all queries to all nodes. The full replication case is more
interesting as it enables the utilization of different scheduling techniques.

To come up with Odyssey scheduler, we experimented with a collection of scheduling tech-
niques, including the simple static and dynamic schemes (SQS and DQS) for full replication
settings, discussed in Section 2. Unfortunately, these schemes suffer from severe load balancing
problems for many categories of query batches. For the static case, consider for example, a
query sequence which consists of progressively more difficult queries (i.e., of queries that each
requires less time to run than the next one). SQS will assign to the first system nodes easy
queries, which they will answer fast, while the last nodes will get more work to do. The dynamic
method (DQS) performs better than SQS for some workloads, but it may also result in load
imbalances: even in simple cases where e.g., a query batch includes a single difficult query at
the end, most nodes may be sitting idle, while a single node is running the difficult query. This
may significantly degrade performance.

Some of these load imbalances could be avoided, if we knew the execution time of each query.
Recent work [24] in a different context, illustrated that there exists a correlation between the
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Figure 3: Seismic queries prediction generation using linear regression

initial value of the BSF variable and the number of vertices visited in a single-node tree index.
This inspired us to perform a corresponding query analysis which showed correlation between
the initial Best-So-Far value and the total execution time. Specifically, similarity search queries,
for which the initial BSF is high, tend to also have high execution times most of the times.

For the analysis, we used a number of queries for a real dataset. Then, we utilized linear
regression to produce the estimation for each query. An example of this outcome (for the
Seismic dataset) is shown in Figure 3. Nevertheless, we note that Odyssey can support other,
more elaborate prediction schemes, if needed.

These observations led us to design two scheduling algorithms. The first, called static
prediction-based scheduling, statically allocates the queries to nodes based on their estimations.
Each node maintains a load variable, which stores the sum of the estimations of the queries that
are assigned to it. The algorithm uses a greedy approach to assign queries to nodes so that load
balancing is achieved. There are two variations of the algorithm: the first schedules the queries
using their order in the sequence, and the second sorts the sequence before starting the process
The second, called dynamic prediction-based scheduling, is an enhanced version of DQS, where
queries as assigned to nodes after sorting the entire query batch, based on estimations (in
decreasing order, so that difficult queries are assigned first).

The Odyssey framework supports all of the above algorithms (which are meaningful not
only under full replication, but also under partial replication as explained later). The Odyssey
index utilizes dynamic prediction-based scheduling which turned out to be the best approach
in most cases.

3.2 Load Balancing

Odyssey provides a load balancing (LB) mechanism, which can be applied on top of any of
the scheduling schemes described in Section 3.1. Odyssey’s LB mechanism ensures that nodes
sitting idle can steal work from other nodes which still have work to do (provided that they
store similar data).

This is necessary as predictions may not always be accurate, or the query batch may be
produced dynamically at run time, in which case sorting of the entire query batch is not possible.
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The work-stealing mechanism of Odyssey is necessary not only for ensuring good performance
but also for achieving high scalability. As the number of utilized nodes increases, the number
of queries from the batch that each node has to process becomes smaller and smaller. Thus,
problematic scenaria as those described in Section 3.1, may appear, where just one or a few
nodes work on difficult queries, while others are sitting idle (without having enough work to
do).
Overview of our approach. We performed a number of experiments to get a break-down
of the query answering time. This break-down illustrated that the biggest part of the time for
query answering goes to priority queue processing. We thus focus on designing a method that
will allow nodes to steal work during the execution of that phase.

For simplicity, we first focus on the full-replication case, where the initial collection of data
is available in every node. Its extension to partial replication is discussed in Section 3.3.

A simple work-stealing scheme [8, 1] would not work, mainly because moving data (stored
in priority queues) around from one node to another is expensive and should be avoided. Thus,
the main challenge in our setting is to come up with a mechanism for taking work away from
one node and assigning it to another without ever moving any data around.

Odyssey load-balancing mechanism works as follows. An idle system node sn randomly
chooses another node sn′ and sends it a steal request. If sn′ has still work to do, it chooses
a number of priority queues to give away to sn. To avoid paying the cost of transferring data
around, Odyssey employs a technique that informs sn on how to locally build the priority queues
to work on, based on its own index. Node sn traverses the identified part of its index tree and
re-constructs these priority queues. As the time to create the priority queues is relatively small
in comparison to that for processing them, this scheme works quite well. Experiments show
that stealing work in this way, results in performance gains in several cases.

Unfortunately, the approaches followed by existing state-of-the-art indexes [44, 40, 41] for
creating and processing the priority queues are too naive to support a work-stealing scheme
which requires to avoid moving any data around. The reasons is that existing approaches use
simple techniques to populate the priority queues in order to ensure that each queue has about
the same number of elements spreading tree leaves from many subtrees to the same priorioty
queue (for instance, in [44, 40, 41], each thread follows a round-robin scheme for placing leaves
that cannot be pruned in the priorities queues). This disallows the local re-construction of stolen
priority queues in an efficient way, because it is hard (or very costly) to track what elements
each priority queue contains.

In Odyssey, we propose a new implementation of a single-node, multi-threaded index, which
respects the good design principles described for parallel indexes in Section 2, while it simul-
taneously copes with the problem mentioned above. We describe this implementation in more
detail in Section 3.2.1.

3.2.1 Single-Node Query Answering

Consider any system node sn and assume that an iSAX-based index tree has been created
and an initial value for the BSF has been computed in sn. An outline of the single-node
query answering algorithm of Odyssey is depicted in Figure 4. The pseudocode is provided in
Algorithms 1 and 2.
Description. Node sn executes each of the queries in the query batch assigned to it one by one
(Algorithm 1, line 3). For each such query Q, it creates a number of search workers to execute
it (line 8). FinishFlag[Q] identifies whether the processing of query Q has been completed in
sn. As soon as, all queries in sn’s query batch have been processed, sn informs other nodes
that it has completed by sending a message of type DONE to all other nodes (line 14). Then,
it tries to help other active nodes by executing PerformWorkStealing (line 15). Each node
allocates a thread to play the role of the work-stealing manager (line 6). This thread simply
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Figure 4: Outline of the Odyssey single-node query-answering process.

process all work-stealing requests that the node will receive (Algorithm 3). (The details of how
work-stealing works will be discussed in Section 3.2.2.) We now continue to describe the code
of the search workers (Algorithm 2).

The query answering algorithm in sn splits the tree into root subtree (RS) batches, i.e., sets
of consecutive root subtrees, and allocates a number of threads to work on these RS-batches.
Each thread begins by getting an RS-batch to work on. Then, the thread begins an RS-batch
processing routine (called ProcessBatch in Algorithm 2), which traverses the tree recursively
and inserts the leaves that cannot be pruned into one of a set of priority queues that belong
to the RS-batch. Each tree vertex x has an iSAX summary, which corresponds to the data
series stored in the subtree rooted at the vertex. If the lower bound distance between this iSAX
summary and the iSAX summary of the query series is higher than BSF, then the entire subtree
rooted at x can be pruned, as in this case, we know that we have already seen a data series
with a smaller real distance to the query than any element stored in the subtree. Otherwise,
if x is a leaf, it is placed in one of the priority queues of the RS-batch, using the lower bound
distance between x and the query series, as its priority. For every RS-batch, there exists one
active priority queue at each point in time. When the size of this priority queue surpasses a
threshold, this queue is abandoned and another one is initialized for the RS-batch.

Each worker is assigned an RS-batch using a Fetch&Add object A completion flag for each
RS-batch is set when all subtrees of the RS-batch has been traversed and the priority queues
of the RS-batch have been populated (lines 27, 32). As soon as an idle thread th discovers that
all RS-batches have been assigned for processing, it tries to help other still active threads to
complete the traversal in their assigned RS-batches (lines 29-34 of Algorithm 2). Thus, it checks
the completion flag of RS-batches and if it discovers some RS-batch whose completion flag is
still not set, it starts helping the thread th ′ that has been assigned the RS-batch. Coordination
between th ′ and its helpers is achieved using again a Fetch&Add object. This way, each root
subtree of an RS-batch is assigned to just one thread. Synchronization in accessing a priority
queue is achieved using locks. To reduce the synchronization cost, there is threshold, HelpTH ,
on the number of threads that may help on each RS-batch (line 30).

This phase ends, when the root subtrees of all RS-batches have been traversed and all
priority queues have been populated. Experiments illustrated that we get the best performance
when the number of subtree batches, Nsb, equals the number of worker threads.
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As soon as this tree traversal phase is over, we have a set of priority queues for each RS-
batch, stored in an array. For performance reasons, this array is sorted by the priority of the top
element of each priority queue. This comprises the priority queue preprocessing phase (lines 35-
42). Specifically, a coordinator thread (which is the thread with tid = 0 in Algorithm 2),
puts the priority queues of all RS-batches into a shared array (line 38), and then sorts the array
using the priorities of the root elements of the priority queues (line 39). This way, the algorithm
processes the priority queues with the smallest lower bound distances to the query first. These
queues contain data series that are more probable to be in closer real distance to the query,
thus enabling further pruning.

Then, the priority queue processing phase starts (lines 44-53). All threads perform Fetch&Add
to get a priority queue from the PQueues array to process. This processing is performed by a rou-
tine, called ProcessPriorityQueue. ProcessPriorityQueue processes those data series contained
in the tree leaves that are stored in the priority queue, which cannot be pruned. Whenever a
lower real time distance between any of these series and the query series is calculated, the BSF
is updated to contain this distance. The final value of BSF is the response to the query.

Algorithm 1: Odyssey Single-Node Query Answering - Code for node sn

1 Shared Variables: Shared PointerToArray PQueues = NULL
Input: QuerySeriesBatch QBatch, Index Index, Integer NThreads

2 Array BSFArray[] . with size |QBatch|
3 for every query series id Q in QBatch do
4 iSAXQ = calculate iSAX summary for Q
5 BSF = approxSearch(iSAXQ, Index)
6 create a thread to execute an instance of WorkStealingManager(Q)
7 for i ← 0 to NThreads− 1 do
8 create a thread to execute an instance of SearchWorker(Q, Index, Nsb, i, PQueues )
9 end

10 Wait for all threads to finish
11 FinishFlag [Q ] := TRUE
12 BSFArray[Q] := BSF ;

13 end
14 send(DONE, sn) to all nodes
15 PerformWorkStealing()
16 return (BSFArray)

Size of Priority Queues. The size of each priority queue is maintained smaller than or eqaul
to a specific threashold, TH . If adding an element in a priority queue results the size of the
queue to reach TH , then the thread gives up this priority queue and initiates a new one for the
RS-batch. This way, each priority queue does not contain leaves from more than one RS-batch,
and contains at most TH leaves from the tree part that corresponds to the RS-batch.

Choosing the appropriate value for the threashold, TH , is important for achieving load
balancing among the different threads. Our goal is to develop a method for determining a
threshold value which will result with a set of priority queues that have about the same size.
The threshold is determined and configured for every dataset we use, based on the queries we
run. We explain the process of determining TH for the Seismic real dataset [2], but the process
is similar for all other datasets (real or synthetic) we experimented with. After running multiple
queries of varying difficulty, we figured out that there exists again a correlation between the
initial BSF that is computed for the query and the median size of the priority queues produced
for answering it. Then we performed a sigmoid function fitting using the following parameterized
formula:

f(Z) = m+ (M −m)
1

1 + b · exp(−c(Z − d))

where M ∈ [0, 1],m ≤ M, b, c ∈ R∗, d ∈ R are the parameters of the sigmoid function (Fig-
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Algorithm 2: SearchWorker - Code for thread tid

17 . Shared Variables
18 Shared Integers BCnt = 0, PQCnt = 0, TotPQ = 0;

Input: QuerySeries Q, Index Index, Integer Nsb, Integer tid, Queue PQueues[]

19 Integer bindex, pqindex;
20 . Tree Traversal Phase
21 while (TRUE) do
22 bindex ← Fetch&Add(BCnt,1);
23 if bindex ≥ Nsb then
24 break;
25 end
26 ProcessRSBatch(Q, bindex, Index.RSBatches);
27 Index.RSBatches[bindex].complete← TRUE;

28 end
29 for bindex← 0 to Nsb do
30 if !Index.RSBatches[bindex].complete AND

Fetch&Add(Index.RSBatches[bindex].helped, 1) < HelpTH then
31 ProcessBatch(Q, bindex, Index.RSBatches);
32 Index.RSBatches[bindex].complete← TRUE;

33 end

34 end
35 Barrier for all threads;
36 . Priority Queue Preprocessing Phase
37 if tid == 0 then
38 Traverse all RS-batches and put their priority queues into PQueues[];
39 SortByRootPriority(PQueues);
40 TotPQ← number of valid elements of PQueues;

41 end
42 Barrier for all threads;
43 . Priority Queue Processing Phase
44 while (TRUE) do
45 pqindex ← Fetch&Add(PQCnt, 1);
46 if pqindex ≥ TotPQ then
47 break;
48 end
49 if PQueues[pqindex].stolen then
50 continue;
51 end
52 ProcessPriorityQueue(PQueues[pqindex]);

53 end

ure 5a(a)). The final threshold value is the median value estimation as it comes from the sigmoid
function, divided by a factor (e.g. for seismic this factor has to be 16, based on the diagram
shown in Figure 5a(b)).

Experiments show that after the tree traversal phase is completed, we end up with a set of
RS-batches that have a number of priority queues with most of them being the same size. This
results in load balancing among the threads when processing priority queues.

3.2.2 Work-Stealing Algorithm

If a system node sn becomes idle, sn initiates the work-stealing protocol (Algorithm 4, lines 79-
81). It randomly chooses a system node sn ′ from the set of those nodes that sn knows to be
still active (line 79) and sends a steal request to it (line 80). The use of the ResponseFlag is

12



Algorithm 3: WorkstealingManager - Code for node sn
Input: Integer NB

54 Upon Receiving a message of type StealingRequest from node sn′:
55 S := Set of at most Nsend ids of RS-batches that satisfy the Send-Away Property
56 send(S, Q of sn, Q’s current BSF) to sn′

57 Mark the priority queues of the RS-batches with ids in S as stolen

58 . Always-enabled event: it is executed repeatedly
59 Upon receiving no message:
60 if FinishFlag [Q ] in sn is set then
61 Terminate
62 end

Algorithm 4: PerformWorkStealing - Code for node sn
Input: Index index, Function exact search workstealing func, QuerySeries queries[], Integer

total nodes per nodegroup

63 Upon Receiving a DONE message from node sn′:
64 add sn′ in set DoneNds
65 if DoneNds contains all system’s nodes then
66 Terminate
67 end

68 Upon Receiving a msg = 〈S,Qs, BSFs〉 from node sn′:
69 if —S— ¿ 0 then
70 Create threads to traverse the RS-batches with ids in S
71 Populate and process the corresponding priorities queues
72 BSFArray[Qs] := BSFs; . computed by threads above
73 Wait all threads to complete

74 end
75 ResponseFlag := 0

76 . Always-enabled event: it is executed repeatedly
77 Upon receiving no message:
78 if !(ResponseFlag) then
79 sn′ := choose randomly a node not in DoneNds
80 send(StealingRequest, sn) to sn′

81 ResponseFlag := 1

82 end

necessary for avoiding sending more than one steal requests to the same target node1.
A thread in each node acts as the work-stealing manager (Algorithm 3). As soon as the

work-stealing manager of sn ′ receives the request, it tries to give away work to sn (lines 55-57 of
Algorithm 3). Recent work in a different context [24], illustrated that there is a gap between the
time the correct answer is recorded in BSF and the time when the search algorithm terminates.
This is because a large amount of time during the execution of the query answering algorithm
is devoted to verifying that there is no better answer in the collection. Specifically, in [24],
evidence is provided that the 1-NN is often found in a small amount of time, but it takes the
search algorithm much longer to verify that there is no better answer, in order to be able to
safely terminate.

Based on these findings, Odyssey work-stealing mechanism, chooses to give away an RS-
batch B which satisfies the Take-Away Property, namely that B is not yet stolen and its first
priority queue is located in the rightmost possible index of the PQueue array. This priority

1The codes for Algorithms 4 and 3 is written in an event-driven style [?, ?]. The code under each upon event
E takes place clause is executed atomically each time event E is enabled. The upon receiving no message
event is always enabled, meaning that the code under it may be executed an arbitrarily large (or even infinite)
number of times. The use of ResponseFlag ensures that this code will run only once for each target node.
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(a) Sigmoid function fitting for determining
TH .

(b) Performance for different Threshold divi-
sion factors.

Figure 5: Odyssey Single-Node Query-Answering Algorithm Configuration.

queue is then marked as stolen. If more than one batches are to be given away, this process is
applied repeatedly to choose additional RS-batches.

Recall that the PQueue array is sorted by the priority of the top element of each priority
queue. Thus, by giving away batches in this way, sn′ assigns to helpers priority queues that
may still contain work. Additionally, it gives away RS-batches that have the highest probability
to be unprocessed. Throughout the process, the current BSF is shared among the nodes, every
time it is updated, as a helper may steal a priority queue that contains a better answer (or the
owner may compute a better value for BSF later).

The number, Nsend, of RS-bathes that a node gives-away during stealing affects performance.
Theoretically, we would like to give away a number of RS-batches which on the one hand, it will
enable the stealing node to do a noticeable amount of work, but on the other, the work to be
given away should not result in higher query answering times. Experiments shows that fixing
the number of RS-batches a node gives away during stealing to 4 was the best choice. Thus,
Nsend = 4 in our work.

3.3 Data Replication

Odyssey aims at ensuring data scalability and, at the same time, good performance for query
answering. Optimal data scalability requires to follow a no replication approach, but experi-
ments show that the best query answering performance is noticed for fully replicated settings.
Odyssey manages to effectively navigate through this trade-off between data scalability and
good performance during query answering, by providing a flexible partial replication scheme.
Figure 6 schematically illustrates how this scheme works in a system with 8 nodes.

The idea is to split the set of nodes into a number of clusters such that i) each node
participates to exactly one cluster and ii) the set of data series stored in each node of a cluster are
mutually disjoint (within the cluster), while their union forms the entire data series collection.
Additionally, a replication group is defined as the group of nodes that contain exactly the same
set of data series. Specifically, Figure 6 illustrates a configuration with 2 clusters, each one
having 4 nodes (of different color), and 4 replication groups, each one having 2 nodes (of same
color). Since the nodes of a replication group build their iSAX indices using the same set of
data series, we can apply the scheduling and load-balancing schemes, described in Sections 3.1
and 3.2, respectively.

Notice that (for a fixed number of nodes) the number of clusters determines both the number
of replication groups and the replication degree of the system. In a configuration with d clusters
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Figure 6: Data Replication with four replication groups.

and N nodes, each replication group contains N/d nodes and each node stores d times more data
than in the no-replication case. Fewer clusters lead to smaller space overheads (and thus better
data scalability). For example, in a configuration with N clusters, all nodes store the entire
data series collection, whereas using only a single cluster corresponds to the no-replication case,
thus incurring no space overhead at all. Therefore, Odyssey’s data replication scheme allows us
to tackle memory limitation problems.

Additionally, fewer clusters lead to better index creation scalability. To better understand
this, we define the load factor to be the fraction of the number of nodes that share the same
data divided by the total number of nodes in the system. This metric represents the percentage
of the dataset that each node loads. For example, in full replication, the number of clusters is
N and the load factor is 1, meaning that each individual node will load 100% of the dataset.

We experimented with different number of clusters in Section 4 to illustrate that Odyssey
nicely navigates through the discussed tradeoffs. Specifically, considering a system with N nodes
(where N is a power of 2), Odyssey’s data replication scheme supports 1, 2, 4, 8, . . . , N clusters,
i.e. Θ(logN) different number of clusters, and replication groups of the same size. However, it
can easily be adjusted to work for settings with any number of nodes (not necessarily a power
of 2) and for replication groups of different sizes.

3.4 Data Partitioning

Odyssey framework supports more than one partitioning schemes. Equally-split (ES) is a simple
scheme which splits the input data into N equally-sized chunks, where N is the number of
system nodes. Each system node is assigned a discrete chunk and builds the corresponding
index, resulting in a scheme where each node keeps a local index on its own part of the data.
Queries are forwarded to all nodes. Each node produces an answer based on its local index and
data. The minimum among them is the final answer to the query. Before distributing the data,
random shuffling (RS) can be applied to randomly rearrange the series of the initial collection.

To answer a query batch using partial data replication, each query is sent to every system
node. Each such node answers the query using its local data, and the partial answers are
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gathered in the end to find the smallest answer. Very often for real data, the close answers to a
query could be located into a small part of the dataset. The group that has these data will get
a good initial answer, it will prune more and it will answer each query really fast, while other
groups, will not necessarily compute good initial BSF values. Thus, they will have more work to
do leading to imbalances. For this reason, we enhance our distributed index with a book-keeping
method that supports BSF sharing. When a node is processing a query and finds an improved
value for BSF, it shares this value through a common BSF-Sharing channel (as illustrated in
Figure 6). Every node periodically checks this channel to see if an answer for a query has
arrived. Because this process runs in parallel, a node may receive a better answer for a query
that will be encountered later on. Odyssey book-keeping method solves such synchronization
problems. Each node holds an array which stores the improvements received from the channel
for the BSF of each query, and before answering a query it checks the data held in this array.
This way, each node can have the better answers of a query extracted from all different nodes,
and our experimental evaluation shows that the use of this method is critical for performance.

In addition to these simple techniques, Odyssey also provides a sophisticated data parti-
tioning scheme, based on preprocessing of the initial data series collection, which provides a
density-aware distribution of the data among the available nodes. The required preprocessing
incurs some time overhead. However, it occurs only once for answering as many queries as
needed, and thus, as the number of queries to process increases, this overhead is amortized. We
dercibe this scheme in Section 3.4.1.

3.4.1 Density-Aware Data Partitioning

We observe that a good partitioning strategy should not assign all similar series to the same
system node. In such a case, we risk to create work imbalance for the following reason. Assume
that we need to answer a similarity search query, for which all candidate series from the dataset
that are similar to the query are stored in one of the system nodes, while all other nodes are
storing series that are not similar to the query. Then, during query answering, the node with the
similar series will need to perform many (lower bound and real distance) computations in order
to determine which of the candidate series is the nearest neighbor to the query, with essentially
little pruning (if at all). On the other hand, all the other nodes that store dissimilar series will
be able to prune aggressively, and therefore, finish their part of the computations much faster.

The above observations led us to the design of the density-aware partitioning strategy,
whose goal is to partition similar series across all system nodes, without incurring a high com-
putational cost. This is achieved by exploiting Gray Code [23] ordering for effectiveness (since
it helps us split the similar series), and the summarization buffers of our index for efficiency
(since we have to operate at the level of buffers, rather than individual series).

Figure 7 illustrates an example of partitioning the data series in the summarization buffers
according to a simple strategy using binary code, and to a strategy based on Gray Code. In the
former case, the buffers that end up in the same node contain similar series, since their iSAX
representions (the iSAX word of the buffer) are very close to one another; e.g., node 1 stores
buffers ”000” and ”001”, so series whose iSAX summaries only differ in one bit. In the latter
case, this problem is addressed. The Gray Code ordering places similar buffers close to one
another (by definition, two neighboring buffers in this order differ in only one bit), so it is then
easy to assign them to different system nodes in a round-robin fashion.

We depict the flowchart of the density-aware partitioning strategy in Figure 8. We start
by computing the iSAX summaries of the data series collection, and assigning each summary
to the corresponding summarization buffer. These buffers are ordered according to Gray Code,
and then the actual data partitioning starts (using round-robin scheduling). We first partition
the series inside the λ largest buffers; this is necessary, since often times a small number of
buffers will contain an unusually large number of series (that we do not want to assign them
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Figure 8: Flowchart of the density-aware data partitioning.

all to the same system node). Then, we partition the remaining buffers, and we check if the
partitioning is balanced. If it is not, then we select the largest buffer of the largest node, and
we partition the series inside this buffer.

Our experiments with several real datasets (omitted due to lack of space) showed that
density-aware exhibits a very stable behavior as we vary λ from a a few hundred to several
thousands. In this study, we use λ = 400.

4 Experimental Evaluation

Setup. Our experiments were conducted on a cluster of 16 SR645 nodes, connected through
an HDR 100 Infiniband network. Each node has 128 cores (with no hyper-threading support),
256GB RAM, and runs Red Hat Enterprise Linux release 8.2. All the evaluated algorithms are
written in C and compiled using MPICC, Intel(R) MPI Library for Linux OS, Version 2021.2.
Algorithms. In our experimental evaluation, we test the different strategies and algorithms
proposed by the Odyssey Framework. Our analysis includes Odyssey’s dataset distribution
strategies: (i) without replication: distribution of equally-sized chunks (equally-split), the
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Dataset # of series Length (floats) Size (GB) Description

Seismic 100M 256 100 seismic records
Astro 270M 256 265 astronomical data
Deep 1B 96 358 deep embeddings
Sift 1B 128 477 image descriptors

Random 100M 256 100 random walks

Table 1: Details of datasets used in experiments.
iSAX summarization-aware distribution algorithm (isax-aware), the density-aware dataset
distribution algorithm (density-aware); and (ii) with replication: full replication of dataset
across all nodes (full) and partially replicated dataset using k ∈ {1, 2, 4, . . . , N} replication
groups. Note that in the latter case, partial-N is the same with full and partial-1 is the
same with any of the former strategies, i.e. the ones without replication. Additionally, it includes
Odyssey’s queries scheduling algorithms: (i) static scheduling of equally sized sets of queries
(static); (ii) dynamic scheduling using a coordinator node (dynamic); and (iii) predictions-
based scheduling, including: static without ordering (predict-st-unsorted), static with or-
dering (predict-st), and dynamic (predict-dn). Moreover, we evaluated Odyssey’s work-
stealing mechanism using both dynamic and predict-dn, with the latter being our best queries
scheduling algorithm (as explained later in paragraph “Queries scheduling”); the resulting al-
gorithms are called work-steal and work-steal-predict, respectively.

We note that that Odyssey’s query scheduling and work-stealing mechanisms can be used
together only with the full or partial dataset distribution strategies (which include some
dataset replication). distribution strategies that do not include dataset replication.

We compare Odyssey with the following baselines: (i) MESSI, where we run the MESSI index
independently in each system node; (ii) MESSI SW BSF, where we extend the previous solution
by enabling system-wide sharing of the BSF values; and (iii) DPiSAX, where we implement the
DPiSAX data partitioning strategy, and (for fairness of comparison) implement query answering
in each node using MESSI.
Datasets. We evaluated Odyssey’s strategies and algorithms using both real and synthetic
datasets, of varying sizes. The synthetic data series, called Random, were generated as random-
walks (i.e., cumulative sums) of steps that follow a Gaussian distribution (0,1). This type of data
has been extensively used in the past [17, 11, 66, 65, 15, 16], and models the distribution of stock
market prices [17]. Our four real datasets come from the domains of seismology, astronomy,
deep learning, and image processing. The seismic dataset, Seismic, was obtained from the IRIS
Seismic Data Access archive [22]. It contains seismic instrument recording from thousands of
stations worldwide and consists of 100 million data series of size 256. The astronomy dataset,
Astro, represents celestial objects and was obtained from [53]. The dataset consists of 100
million data series of size 256. The deep embedding dataset, Deep, retrieved from [56], contains
267 million Deep vectors of size 96 extracted from the last layers of a convolutional neural
network. Finally, the Sift dataset [29] contains image descriptors. Table 1 summarizes the
characteristics of these datasets.
Evaluation Measures. During each experiment and for each node, we measure (i) the buffer
time required to calculate the data-series iSAX summarization and fill-in the receive buffers,
(ii) the tree time required to insert the items of the receive buffers in the tree-index, and (iii)
the query answering time required to answer the queries assigned to this node. The above times
(all together) constitute the total time that a node works during an experiment; also, buffer and
tree times constitute the time required to create the index, called index time. To compute the
buffer time, tree time, index time, query answering time, and total time of the system during an
experiment, we take the maximum among the corresponding times of each node participating
in this experiment. We report the average times of 10 experiments. We note that all algorithms
return in all situations the exact, correct results.
Query scheduling. To compare Odyssey’s queries scheduling algorithms, the fully replicated
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Figure 9: (a) Comparison of Odyssey’s scheduling algorithms, using Seismic and full replica-
tion. (b)-(d) Query answering scalability as the number of queries increase, using work-steal
with Random.

dataset distribution strategy (i.e. full) is selected, to avoid measuring any overheads resulting
from the partial replicated strategies. Recall that scheduling algorithms can’t be used together
with the no replication strategies. We experimented with both Random (synthetic dataset) and
Seismic (real dataset), and all of our algorithms positively affected performance in comparison
with static. Moreover, for the synthetic dataset, we have seen no remarkable differences
between all our scheduling algorithms, since the randomness when producing the data series
of both the dataset and the queries set, results in queries with almost the same effort to be
answered. Therefore, we present only the results for Seismic, where the effort for answering
queries varies. Specifically, Figure 9a shows that as the number of nodes increases, predict-dn
is the best scheduling policy in all cases and it is up to 150% better than static.
Work-stealing. Figure 9a shows that work-steal-predict greatly outperforms (up to al-
most 2x) predict-dn for large number of nodes, i.e. our work-stealing technique positively
affects performance on these cases. This happens since (as explained in Section 3.2.2) all
the algorithms that do not use the work-stealing technique (i.e. all but work-steal and
work-steal-predict) suffer from load-imbalance issues. Specifically, when a query set con-
tains a few (significantly less than the number of nodes) queries that require significantly more
effort to get answered (than the majority of queries), then as the number of nodes increases
more nodes remain idle at the end of the corresponding query answering phase, since no such
difficult query is assigned to them. This still holds even when using the best queries scheduling
policy.
Query Scalability. To evaluate the scalability of Odyssey’s algorithms with increasing number
of queries, we conducted experiments with work-steal using synthetic and real datasets. In
Figure 9b we present the results for the Random dataset (results with the other tested datasets
are similar) with full replication, for a total of 100, 200, 400, and 800 queries. As we can see,
work-steal scales almost perfectly with the increasing number of queries, since the time to
execute 100 queries in 1 node is the same with the number to execute 200 queries in 2 nodes,
which is the same with the number to execute 400 queries in 4 nodes, which is the same with
the number to execute 800 queries in 5 nodes. We have observed exactly the same trend for the
partial scheduling algorithms (Figure 9c). Note that partial replication can be applied only
with two or more nodes. Moreover, we observe that all Odyssey’s queries algorithms achieve
good scalability as the number of nodes increases. This is better illustrated in Figure 9d, which
presents the work-steal throughput on the Random dataset.
Replication. We study now Odyssy’s different replication strategies using the Seismic dataset
and work-steal-predict that is our best scheduling algorithm, to avoid any overhead incurred
by load-imbalances between nodes. Specifically, we test equally-split, partial-4, partial-2
and full, replication strategies, for varying number of queries. Figures 10a-10d [[[Lef: change
labels of Figure 10b]]] present the query answering time2, where we observe that the more a
dataset is replicated, the less time is required to answer queries, and this is consistent for all

2We report results with 16 nodes only for the small workload, because the scheduler of our cluster does not
allow long-running jobs on more than 8 nodes.
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Figure 10: Comparison of Odyssey’s replication strategies, using work-steal-predict with
Seismic.
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Figure 11: (a) Index scalability on Deep using equally-split, as the dataset size increases,
with 16 nodes. (b) Index scalability on Deep using equally-split, as the number of nodes
increases. (c) Index scalability on the Random dataset as both the dataset size and the number
of nodes increase linearly, using equally-split. (d) Comparison of work-steal-predict with
Odyssey’s different data partitioning schemes, against other implementations, using Seismic.

number of queries. So, the full replication strategy has the smaller queries answering time.
On the other hand, Figures 10e-10h present the total execution time, which additionally to
query answering time, it also includes the time for tree index construction. Interestingly, for
small query numbers (100 and 200), we observe exactly the opposite: a larger amount of dataset
replication, results in bigger total execution time, with full having now the bigger tree index
construction time. This happens because the increased tree index construction time dominates
in the total time. However, as the number of queries increases, the differences between the
total execution time of algorithms become smaller. Remarkably, for large enough number of
queries (e.g. 800), the increased tree index construction cost is amortized by the smaller query
answering time, having full replication strategy performing better than equally-split. This
analysis revealed an interesting trade-off (regarding the level of replication) between the query
answering cost and the tree index construction cost, while the latter can be amortized using a
large enough set of queries.
Index Scalability. Figures 11a and 11b illustrate the index creation time of Odyssey for our
1B series Deep dataset using equally-split, as the dataset size increases on a system with 16
nodes and as the number of nodes increases (while using the full size datasets), respectively.
In both cases, we observe optimal speedup regarding index creation. Additionally, Figure 11c
presents the scalability of Odyssey on the Random dataset as both the dataset size and the
number of nodes increase linearly, again using equally-split. As shown, Odyssey achieves
perfect scalability since the corresponding buffer times and index times remain almost constant.
Data partitioning and comparison to competitors. Figure 11d presents (i) a comparison
of work-steal-predict Odyssey’s best performing algorithm, against dmessi, dmessi-sw-bsf,
and dpisax; and (ii) the performance of Odyssey’s different data partitioning schemes, i.e.,
equally-split and density-aware, as well as the full replication strategy, using Seismic.
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Interestingly, dmessi performs significantly worse that all the other implementations, show-
ing that by simply executing multiple instances of a state-of-the-art single-node algorithm like
MESSI on a multi-node system (in order to scale its applicability on larger dataset sizes) does
not perform well on real datasets; thus, more sophisticated approaches are required. On the
other hand, Odyssey’s work-steal-predict with full replication strategy is significantly
better than all its competitors. Specifically, it is up to 6.6x, 3.7x, and 3.8x faster than dmessi,
dmessi-sw-bsf, and dpisax, respectively. Moreover, regarding Odyssey’s data partitioning
techniques, Figure 11d shows that work-steal-predict with the density-aware partition-
ing performs better than equally-split.

5 Conclusions

In this work, we presented Odyssey, a novel distributed data-series processing framework that
takes advantage of the full computational capacity of modern clusters comprised of multi-core
servers. Odyssey addresses a number of challenges in designing an efficient and highly-scalable
distributed data series index, including efficient scheduling, load-balancing, and flexible partial
replication, and successfully navigates the fundamental trade-off between data scalability and
good performance during query answering. Our experimental evaluation on several real and
synthetic datasets demontrates that Odyssey achieves its challenging goals.
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